

**CONCURSO ITA 2025** 

EDITAL: 01/ITA/2025

CARGO: PROFESSOR

PERFIL: MS-03

## CADERNO DE QUESTÕES

- 1. Esta prova tem duração de **4 (quatro) horas**.
- 2. Você poderá usar **apenas** caneta esferográfica de corpo transparente com tinta preta, lápis ou lapiseira, borracha, régua transparente simples e compasso. **É proibido portar qualquer outro material escolar ou equipamento eletrônico.**
- 3. Você recebeu este **caderno de questões e um caderno de respostas** que deverão ser devolvidos ao final do exame.
- 4. O caderno de questões é composto por 3 questões dissertativas.
- 5. As questões dissertativas devem ser respondidas exclusivamente no caderno de respostas. Responda sequencialmente as questões, usando caneta preta.
- 6. É obrigatória a devolução do caderno de questões e do caderno de respostas, sob pena de desclassificação do candidato.
- 7. Aguarde o aviso para iniciar a prova. Ao terminá-la, avise o fiscal e aguarde-o no seu lugar.

## Questão 1.

Responda com definições formais, propriedades essenciais (com provas/demonstrações sucintas quando julgar necessário) e exemplos aplicados em engenharia.

- i) Defina o que é uma Variável Aleatória (v.a.). Em seguida, diferencie e exemplifique os principais tipos de variáveis aleatórias, mencionando também os subtipos relevantes.
- ii) Apresente e explique as principais definições de probabilidade.
- iii) Com base nos axiomas de Kolmogorov, deduza ou enuncie propriedades da função de probabilidade.
- iv) Apresente a Fórmula de Bayes em sua forma geral. Explique o significado de cada termo e discuta a importância desta fórmula para a inferência e a revisão de crenças em função de novas evidências.
- v) Defina matematicamente a Função de Distribuição de Probabilidade e apresente exemplos de funções de distribuição para os diferentes tipos de variáveis aleatórias.
- vi) Apresente exemplos práticos de aplicações dos conceitos abordados nos itens anteriores em áreas da engenharia.

## Questão 2.

Formule respostas detalhadas para os itens a seguir, com ênfase nas definições matemáticas e conceitos fundamentais de Distribuições Amostrais e Testes de Hipóteses. Apresente as respostas de forma clara, concisa e rigorosa, incluindo, no final, exemplos de aplicações em engenharia.

- i) Defina matematicamente um teste de hipóteses como a verificação de uma suposição sobre parâmetros populacionais a partir de evidências amostrais. Descreva os conceitos de Erro Tipo I ( $\alpha$ ) e Erro Tipo II ( $\alpha$ ). Explique o papel das distribuições amostrais (por exemplo, Z, Z, Z, Z, Z) na construção de testes.
- ii) Defina formalmente o Nível de Significância de um teste. Explique sua relação direta com o Erro Tipo I e discuta o seu papel na determinação da Região Crítica. Inclua também a definição formal de valor-p, sua interpretação e a relação operacional entre Nível de Significância e valor-p na regra de decisão.
- iii) Defina o Poder de um Teste de Hipóteses. Qual a sua relação com o Erro Tipo II ( $\beta$ )? Explique como os seguintes fatores influenciam o poder de um teste: (a) tamanho da amostra (n) e (b) nível de significância ( $\alpha$ ).
- iv) Descreva o teste de hipóteses para: (a) a média de uma população, incluindo a estatística de teste para os casos de variância conhecida e desconhecida; (b) Explique o teste de hipóteses para a proporção populacional. Apresente a estatística de teste, as suposições necessárias e como determinar a região crítica; (c) a variância de uma população normalmente distribuída.
- v) Apresente exemplos práticos de aplicações dos conceitos abordados nos itens anteriores em áreas da engenharia.

## Questão 3.

Formule respostas detalhadas para os itens a seguir, com ênfase nas definições matemáticas e conceitos fundamentais da Econometria de Séries Temporais. Apresente as respostas de forma clara, concisa e rigorosa, incluindo demonstrações, quando julgar necessário. No último item apresente exemplos de aplicações em engenharia.

- i) Defina o conceito de processo estacionário, diferenciando entre estacionaridade estrita e fraca (covariância-estacionária). Apresente as condições matemáticas para estacionaridade fraca e explique por que a estacionaridade é fundamental na modelagem de séries temporais.
- ii) Descreva as principais transformações aplicadas a séries temporais para induzir estacionaridade. Forneça expressões matemáticas para cada transformação e discuta quando cada uma é apropriada.
- iii) Defina matematicamente cada modelo: AR(p), MA(q), ARMA(p,q) e ARIMA(p,d,q). Inclua as equações dos processos, condições de estacionaridade e invertibilidade, e explique como o componente integrado (d) diferencia o ARIMA dos demais.
- iv) Defina a função de autocorrelação (ACF) e a função de autocorrelação parcial (PACF). Apresente suas fórmulas matemáticas e descreva os padrões típicos observados na ACF e PACF para processos AR, MA e ARMA, explicando como elas auxiliam na identificação do modelo.
- v) Explique os métodos de previsão para processos AR(p) e MA(q), incluindo a previsão de h passos à frente. Forneça fórmulas matemáticas para as previsões pontuais, destacando as diferenças no comportamento de previsão entre AR e MA.
- vi) Liste e descreva os principais testes estatísticos usados em análise de séries temporais, como por exemplo, o teste de Dickey-Fuller para raiz unitária e o teste de Ljung-Box para ruído branco. Inclua as hipóteses nulas e alternativas, estatísticas de teste e critérios de decisão.
- vii) Apresente exemplos práticos e distintos de como os modelos de séries temporais (ARIMA ou variantes) são aplicados em áreas específicas da engenharia.







