

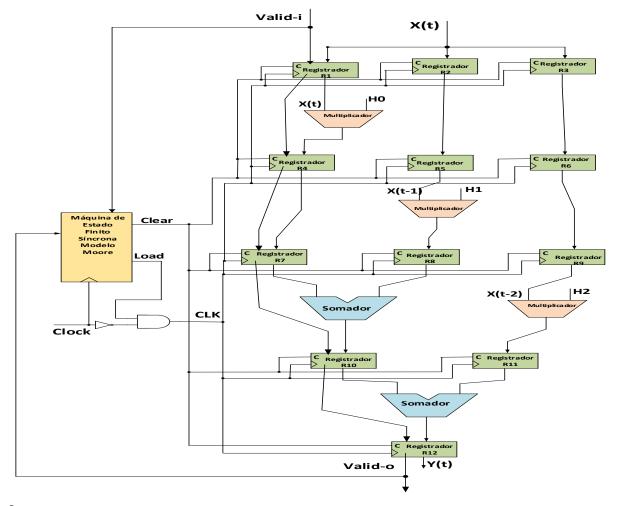
CONCURSO ITA 2025 EDITAL: 02/ITA/2025

CARGO: PESQUISADOR

PERFIL: PQ-02 – SISTEMAS EMBARCADOS

CADERNO DE QUESTÕES

- 1. Esta prova tem duração de 4 (quatro) horas.
- 2. Você poderá usar **apenas** caneta esferográfica de corpo transparente com tinta preta, lápis ou lapiseira, borracha, régua transparente simples e compasso. **É proibido portar qualquer outro material escolar ou equipamento eletrônico.**
- 3. Você recebeu este **caderno de questões e um caderno de respostas** que deverão ser devolvidos ao final do exame.
- 4. O caderno de questões é composto por 5 questões dissertativas.
- 5. As questões dissertativas devem ser respondidas exclusivamente no caderno de respostas. Responda sequencialmente as questões, usando caneta preta.
- 6. É obrigatória a devolução do caderno de questões e do caderno de respostas, sob pena de desclassificação do candidato.
- 7. Aguarde o aviso para iniciar a prova. Ao terminá-la, avise o fiscal e aguarde-o no seu lugar.

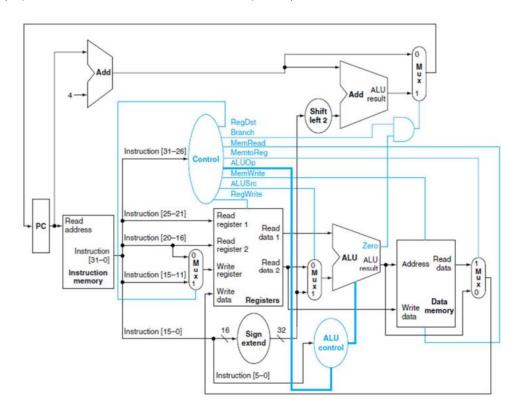

Questão 1. Sabendo que Y(t) abaixo é a equação do filtro FIR (*Finite Impulse Response*), que é usado em muitas aplicações de sistemas embarcados, onde: y(t) é a saída; x(t) é a entrada; Hk é o coeficiente de índice K e N é a ordem do filtro.

$$Y(t) = \sum_{k=0}^{N-1} Hk * X(t-k)$$

O Circuito lógico parcial abaixo é a implementação do filtro FIR de ordem 3 no estilo *pipeline* de quatro estágios. Pede-se:

- a) O Grafo de Transição de estados (GTE) no modelo Moore da MEFS (Máquina de Estado Finito Síncrona), onde os sinais Valid-i e Valid-o são sinais de entrada e os sinais Clear e Load são sinais de saída. Os 12 registradores trabalham na seguinte forma: Quando o sinal C for C=1 e o sinal CLK vai de 0→1 o registrador é resetado; quando sinal C for C=0 e o sinal CLK vai de 0→1 o registrador armazena o dado de entrada. Na MEFS, para os sinais Valid-i=0 e Valid-o=0 o processamento está parado e a MEFS está no estado inicial. Para o sinal Valid-i=1 começa o processamento, há um sinal de entrada X a ser filtrado, e para o sinal Valid-o=1 a saída Y é o sinal filtrado. Quando o sinal Valid-i for para zero, e o sinal Valid-o também for para zero o processamento terminou. Para um novo processamento o sinal Valid-i vai para um.
- b) Sintetize na forma minimizada o GTE obtido no item (a), usando somente portas lógicas e Flip-Flops JK.

Dado: a equação característica do Flip-Flop JK é \mathbf{Q}_{N+1} = \mathbf{J} \mathbf{Q}_{N} + \mathbf{K} \mathbf{Q}_{N}


Questão 2. Sensores inerciais, como acelerômetros e giroscópios, são amplamente utilizados em sistemas embarcados para navegação, estabilização e controle de veículos autônomos. No entanto, o uso exclusivo de sistemas inerciais apresenta limitações que podem comprometer a precisão da estimação da posição e orientação ao longo do tempo.

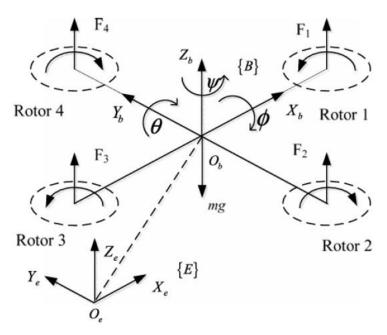
- a) Explique os principais mecanismos de erro associados a acelerômetros e giroscópios MEMS (*Micro-Electro-Mechanical Systems*) utilizados em sistemas embarcados.
- b) Considerando um Veículo Aéreo Não Tripulado (VANT) que dependa apenas de um Sistema de Navegação Inercial (INS), descreva qualitativamente por que ocorre a degradação da estimativa de posição ao longo do tempo.
- c) Discuta como a integração de sensores inerciais com outros sensores (como *Global Navigation Satellite System* (GNSS), câmeras ou magnetômetros) pode mitigar essas limitações, destacando a importância do uso de técnicas de fusão sensorial, como o Filtro de Kalman Estendido (EKF).
- d) Em sistemas embarcados de navegação, os sensores inerciais MEMS apresentam vantagens e limitações em comparação com sensores de grau militar ou aeroespacial. Cite algumas aplicações em que o uso exclusivo de sensores MEMS é suficiente e outras em que a integração com sensores externos é indispensável, justificando sua resposta.

Questão 3. A integração de Inteligência Artificial (IA) em dispositivos embarcados exige superar simultaneamente restrições de energia, memória e latência, sem comprometer a confiabilidade em aplicações críticas. Trata-se de um desafio que envolve a integração entre modelos, *hardware* e *software*, no qual há interdependências e compromissos inerentes a cada decisão. Diante desse cenário, discuta criticamente sobre três dimensões centrais dessa integração:

- As estratégias de adaptação de redes neurais para ambientes embarcados, destacando os impactos no desempenho e os compromissos envolvidos;
- As abordagens de hardware voltadas à IA embarcada, considerando paralelismo, eficiência energética e limitações físicas;
- Os frameworks de software voltados à IA embarcada, considerando sua influência na integração entre modelos e hardware, na eficiência do desenvolvimento e nas limitações que impõem.

Questão 4. Considerando o caminho de dados para o processador MIPS abaixo, preencha a tabela (reproduza a tabela na folha de resposta) com os sinais de controle.

Opcode da instrução	OpALU	Operação da instrução	Campo funct	Ação da ALU desejada	Entrada do controle da ALU
LW	00	load word		add	0010
SW	00	store word	XXXXXX	add	0010
Branch equal	01	branch equal	XXXXXX	subtract	0110
tipo R	10	add	100000	add	0010
tipo R	10	subtract	100010	subtract	0110
tipo R	10	AND	100100	AND	0000
tipo R	10	OR	100101	OR	0001
tipo R	10	set on less than	101010	set on less than	0111


Campo (Tipo R)	ор	rs	rt	rd	shamt	funct
Posição de bit	31:26	25:21	20:16	15:11	10:6	5:0
Campo (Tipo I)	ор	rs	rt	address		
Posição de bit	31:26	25:21	20:16	15:0		

Sinal	Valor 0	Valor 1	
RegDst	Seleciona a entrada 0 do MUX	Seleciona a entrada 1 do MUX	
ALUSrc	Seleciona a entrada 0 do MUX	Seleciona a entrada 1 do MUX	
MemtoReg	Seleciona a entrada 0 do MUX	Seleciona a entrada 1 do MUX	
RegWrite	Desativa o modo escrita	Ativa o modo escrita	
MemRead	Desativa o modo leitura	Ativa o modo leitura	
MemWrite	Desativa o modo escrita	Ativa o modo escrita	

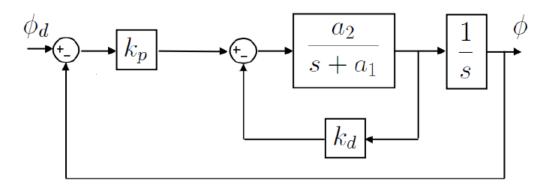
Tabela para preenchimento (Reproduza a tabela na folha de resposta)

Instrução	RegDst	ALUSrc	MemtoReg	RegWrite	MemRead	MemWrite	OpALU
Formato R							
lw							
SW							

Questão 5. Na figura abaixo, temos um quadricóptero ou quadrirotor constituído por seis graus de liberdade, dados por três coordenadas de posição (x, y, z) e três coordenadas de atitude (Φ, θ, ψ) , sendo Φ , θ e ψ os ângulos de *roll*, *pitch* e *yaw*, respectivamente. As coordenadas de posição determinam a posição relativa do sistema de coordenadas do quadrirotor B em relação sistema de coordenadas fixo E. O movimento do quadricóptero é influenciado pela força gravitacional e pelas forças (F_1, F_2, F_3, F_4) aplicadas nos quatro rotores, sendo estas forças proporcionais ao quadrado das velocidades angulares dos rotores.

O modelo dinâmico do quadricóptero é descrito pelas seguintes equações:

$$\begin{cases} \ddot{x} = \frac{U_1}{m}(\cos(\psi)sen(\theta)\cos(\phi) + sen(\psi)sen(\phi)) - \frac{k_f\dot{x}}{m} \\ \ddot{y} = \frac{U_1}{m}(sen(\psi)sen(\theta)\cos(\phi) - \cos(\psi)sen(\phi)) - \frac{k_f\dot{y}}{m} \\ \ddot{z} = \frac{U_1}{m}(\cos(\theta)\cos(\phi)) - \frac{k_f\dot{z}}{m} - g \\ \ddot{\phi} = \frac{1}{I_x}(U_2 - k_f\dot{\phi} + (I_y - I_z)\dot{\theta}\dot{\psi}) \\ \ddot{\theta} = \frac{1}{I_y}(U_3 - k_f\dot{\theta} + (I_z - I_x)\dot{\phi}\dot{\psi}) \\ \ddot{\psi} = \frac{1}{I_z}(U_4 - k_f\dot{\psi} + (I_x - I_y)\dot{\theta}\dot{\phi}) \end{cases}$$


onde a relação entre as entradas de controle (U_1 , U_2 , U_3 , U_4) e as forças (F_1 , F_2 , F_3 , F_4) é dada por:

$$\begin{bmatrix} U_1 \\ U_2 \\ U_3 \\ U_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -l & -l & l & l \\ -l & l & l & -l \\ -k_c & k_c & -k_c & k_c \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \\ F_3 \\ F_4 \end{bmatrix}$$

e m é a massa do quadricóptero, l é a distância entre o centro do quadricóptero e os rotores, l_x é o momento de inércia em relação ao eixo x, l_y é o momento de inércia em

relação ao eixo y, I_z é o momento de inércia em relação ao eixo z, k_f é o coeficiente resistência do ar, k_c é o coeficiente de torque, e g é a aceleração gravitacional.

- a) Demonstre através de um diagrama de blocos e também explique o funcionamento da estrutura do sistema de controle automático necessário para que o quadricóptero siga uma determinada trajetória dada pelas entradas de referência (x_d , y_d , z_d , ψ_d).
- b) Considere que a malha interna de controle do angulo de $roll \ \Phi$ seja dada pelo seguinte diagrama de blocos:

onde Φ_d é a entrada de referência, a_1 e a_2 são coeficientes da função de transferência do sistema, e k_p e k_d são os ganhos proporcional e derivativo do controlador, respectivamente. Deseja-se que o sistema em malha fechada tenha o comportamento de um sistema de segunda ordem na forma canônica, dado por:

$$\frac{\phi}{\phi_d} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

onde ω_n é a frequência natural não amortecida e ζ é o coeficiente de amortecimento. Sendo assim, determine as expressões matemáticas para os ganhos k_p e k_d em função dos parâmetros a_1 , a_2 , ω_n e ζ .

c) O controlador PID (Proporcional-Integral-Derivativo) é bastante utilizado nas malhas de controle de quadricópteros. Demonstre o equacionamento deste controlador e explique como implementá-lo digitalmente.

