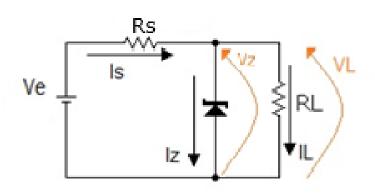


CONCURSO ITA 2025 EDITAL: 04/ITA/2025 CARGO: TÉCNICO

PERFIL: TC-16


CADERNO DE QUESTÕES

- 1. Esta prova tem duração de 4 (quatro) horas.
- 2. Você poderá usar **apenas** caneta esferográfica de corpo transparente com tinta preta, lápis ou lapiseira, borracha, régua transparente simples e compasso. **É proibido portar qualquer outro material escolar ou equipamento eletrônico.**
- 3. Esta prova é composta de 50 questões de múltipla escolha: 10 questões de português, 15 questões de matemática e 25 questões específicas do perfil.
- 4. Você recebeu este **caderno de questões e uma folha óptica** que deverão ser devolvidos no final do exame.
- 5. Cada questão de múltipla escolha admite uma única resposta.
- 6. A folha de leitura óptica, destinada à transcrição das respostas às questões de múltipla escolha, deve ser preenchida usando caneta preta. Assinale a opção correspondente à resposta de cada uma das questões de 01 a 50. Você deve preencher todo o campo disponível para a resposta, sem extrapolar os limites, conforme instruções na folha de leitura óptica.
- 7. Cuidado para não errar no preenchimento da folha de leitura óptica. Ela não será substituída.
- 8. Não haverá tempo suplementar para o preenchimento da folha de leitura óptica.
- 9. É obrigatória a devolução do caderno de questões e da folha de leitura óptica, sob pena de desclassificação do candidato.
- 10. Aguarde o aviso para iniciar a prova. Ao terminá-la, avise o fiscal e aguarde-o no seu lugar.

Questão 01. A transcondutância de um JFET é uma medida da sensibilidade da corrente de dreno (ID) em relação a qual parâmetro?
A () Corrente de porta (IG) D () Resistência de saída (ro)
B () Corrente de fonte (IS)
C () Tensão de dreno-fonte (VDS)
Questão 02. Na região ôhmica de um JFET, qual das seguintes afirmações sobre a resistência de dreno-fonte (RDS) é verdadeira?
A()É infinita.
B () É inversamente proporcional à tensão de dreno-fonte (VDS).
C () É constante e não depende da tensão de porta-fonte (VGS).
D () É uma resistência variável controlada pela tensão de porta-fonte (VGS).
E()Ézero.
 Questão 03. Qual das alternativas abaixo apresenta uma desvantagem da configuração Darlington em relação a um único transistor? A () Aumento do ruído elétrico. B () Resposta de comutação mais lenta. C () Alta impedância de entrada. D () Tensão de base-emissor (VBE) de 0.7V. E () É menos sensível à corrente de base.
Questão 04. Um circuito RC passa-baixa é formado por um resistor de 1 kΩ e um capacitor de 0,1 μ F. Qual é a frequência de corte aproximada do filtro?A () 100 HzC () 700 HzE () 1,6 kHzB () 300 HzD () 1 kHz

Questão 05. Sabendo que a tensão de ruptura do diodo zener do circuito abaixo é de Vz=5V, determine a a resistência mínima, aproximadamente, que a carga RL deve possuir para que o diodo zener continue em operação.

Dados: Ve=30V e RS=2,2KΩ

- Α()90Ω
- **C** () 440Ω
- **E**()680 Ω

- **B**()120Ω
- **D**()510Ω

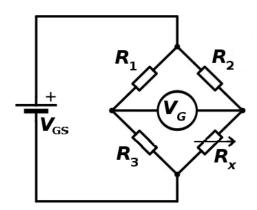
Questão 06. Um dos problemas comuns em amplificadores Classe B é a chamada distorção de cruzamento, que ocorre devido a:

- A () Excesso de ganho em altas frequências.
- **B** () Diferença entre as capacitâncias de entrada e saída.
- **C** () Intervalo de não condução quando a tensão de entrada é próxima de zero.
- **D** () Ruído térmico nas junções semicondutoras.
- **E** () Saturação dos transistores em picos de corrente.

Questão 07. Em projetos digitais, um multiplexador pode ser utilizado para:

- A () Substituir diretamente um conversor A/D, convertendo sinais analógicos em digitais.
- **B** () Distribuir uma entrada única em várias saídas, sem necessidade de lógica adicional.
- **C** () Implementar funções lógicas combinacionais arbitrárias, quando configurado com constantes lógicas e variáveis nas entradas.
- **D** () Gerar sinais periódicos autônomos, funcionando como oscilador.
- **E** () Contar estados sequenciais, atuando como contador síncrono.

Questão 08. Considere as afirmações a seguir, relativas a circuitos digitais baseados em flip-flops utilizados em registradores de deslocamento, divisores de frequência e diferentes topologias de disparo.


- Em um registrador de deslocamento síncrono construído com flip-flops tipo D e I. clock comum, o bit presente na entrada serial é amostrado na borda ativa do clock e propagado de um estágio para o seguinte a cada ciclo, garantindo deslocamento de dados.
- Um contador assíncrono formado por flip-flops do tipo T, com clock por borda de II. descida, divide a frequência de entrada do clock por 2n, onde n é o número de estágios.
- Na configuração mestre-escravo, o segundo estágio (escravo) é acionado pelo III.

IV.	frequência ideal, a	op JK, con as entrada	n clock por bord s J e K devem	permanecer	pere como divisor de em nível lógico alto a transição de estado				
As	sinale a opção que c A () Apenas IV	•	, ,	` '	odas estão corretas				
	B () Apenas I e IV	' D () Apenas I, II e	IV					
detern	t ão 09. No converse ninar o código digital () Comparando o s	l é realizad	0:		odo empregado para				
	, ,								
	() Incrementando c			· ·	valor da entrada				
C	C () Reduzindo o código digital a partir do valor máximo								
	() Utilizando um co enos significativo	nversor D/	A interno para te	star bits do mai	s significativo ao				
Ε() Fazendo média d	de múltiplas	s amostras						
	t ão 10. A resolução V, é aproximadamer		versor A/D de 12	? bits, com uma	ı tensão de referência				
A ()	0,4mV	C () 1,6r	mV	E () 12mV					
B ()	0,8mV	D () 3,3r	mV						

Questão 11. Um dos estágios fundamentais no processo de modulação PCM (Pulse Code Modulation) é a quantização. O que este processo envolve?

- A () Ajuste da largura dos pulsos de acordo com o sinal de entrada.
- **B** () Conversão das amostras do sinal analógico em um código binário.
- **C** () Amostragem do sinal analógico em intervalos regulares.
- **D** () Filtragem do sinal para remover componentes de alta frequência.
- E () Arredondamento dos valores de amplitude da amostra para o nível discreto mais próximo.

Uma ponte de Wheatstone é construída com $R_1=300\Omega$, $R_2=900\Omega$, $R_3600\Omega$, um resistor Rxvariável, um voltímetro VG e uma fonte VGS=24V. Utilize essas informações para responder as 2 próximas questões

Questão 12. Qual o valor Rx deverá assumir para que a ponte fique em equilíbrio, ou seia, VG=0V?

- Α()600Ω
- **C** () 1,2KΩ
- **E**() 2,2KΩ

- **B**()1KΩ
- **D** () 1,8KΩ

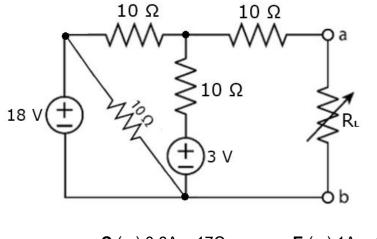
Questão 13. Se o resistor variável Rx for ajustado para 1,5KΩ, qual é a tensão de desequilíbrio VG medida pelo medidor de tensão, assumindo sua impedância de entrada infinita?

- **A**() VG=0V
- **C** () VG =1V
- **E**() VG =5V

- **B** () VG=0,5V **D** () VG =2,5V

(turn-off) depende da remoção da carga armazenada nas junções PN. Considerando os métodos de bloqueio em operação prática, qual procedimento não possibilita a desativação do SCR após a condução ter sido estabelecida?
A () Manter ou aumentar continuamente a corrente de gate após o disparo.
B () Aplicar uma tensão reversa temporária entre ânodo e cátodo para extrair a carga de portadores.
C () Reduzir a corrente de ânodo abaixo da corrente de manutenção I _H .
\boldsymbol{D} ($$) Empregar circuitos de comutação forçada (forced commutation) para forçar a corrente a zero.
E () Interromper a alimentação da rede ou da fonte CC para cessar a corrente de ânodo.
Questão 15. O DIAC é um componente semicondutor de estrutura simétrica utilizado em circuitos de disparo AC, caracterizado por apresentar um ponto de ruptura conhecido como breakover voltage (V _{BO}). Qual das alternativas abaixo expressa com maior rigor o fenômeno que define sua operação?
\boldsymbol{A} () Dispositivo de condução unidirecional que dispara apenas em polarização direta quando V_{BO} é ultrapassado.
\boldsymbol{B} () Elemento bidirecional que permanece bloqueado em ambas as polaridades até que V atinja V_{BO} , momento em que entra em região de resistência dinâmica negativa, conduzindo corrente abruptamente.
C () Componente de condução contínua, cuja corrente cresce linearmente com a tensão aplicada sem região de ruptura definida.
\boldsymbol{D} ($$) Dispositivo que depende de injeção de corrente de gate para iniciar o processo de condução.
E () Diodo avalanche simétrico que mantém tensão aproximadamente constante durante toda a condução.

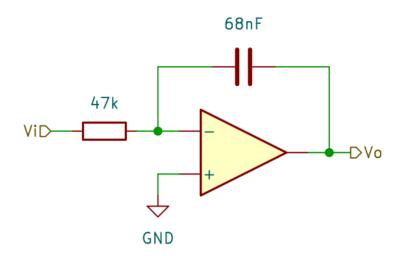
Questão 14. Em um retificador controlado utilizando SCR, o desligamento do dispositivo


Questão 16. Um circuito de iluminação utiliza um TRIAC para controlar a potência de uma lâmpada incandescente de $100~\Omega$, alimentada por uma rede senoidal de 170~V de pico. O TRIAC é disparado em cada semiciclo somente após 90° do início da tensão (conduzindo do disparo até o final de cada semiciclo). Considerando que a lâmpada é puramente resistiva e que a corrente cessa a cada passagem por zero, qual é a potência média aproximada entregue à lâmpada?

A() $\approx 145 \text{ W}$ **C**() $\approx 90 \text{ W}$ **E**() $\approx 60 \text{ W}$

B () \approx 120W **D** () \approx 72 W

Questão 17. Um circuito modulador equilibrado é utilizado para gerar AM-DSB/SC porque:							
A () Amplifica a portadora para aumentar a eficiência							
B () Cancela a portadora, transmitindo apenas as bandas laterais							
) Reduz a largura de banda para metade do sinal modulante							
D () Converte o sinal em FM antes da transmissão							
E()Facilita a detecção por envoltória							
Questão 18. Os sistemas que utilizam ondas de microondas são ideais para comunicações de longa distância, como links via satélite e redes de longa distância ponto a ponto. Qual é a característica fundamental das micro-ondas que permite a transmissão de grandes volumes de dados?							
A () A sua capacidade de propagar-se através da ionosfera sem reflexão.							
B () A sua capacidade de contornar obstáculos com facilidade, garantindo maior cobertura.							
C () Seus comprimentos de onda curtos que permitem o uso de antenas menores.							
D () Sua alta frequência, que permite uma grande largura de banda de transmissão.							
E()A sua baixa frequência, que minimiza a atenuação em longas distâncias.							
Questão 19. Em ambientes urbanos densos, enlaces de curta distância utilizam preferencialmente a faixa UHF em vez de VHF.							
Qual é o fator físico que melhor explica essa escolha, considerando fenômenos de multipercurso e atenuação?							
A () A menor suscetibilidade de UHF à refração atmosférica garante maior estabilidade de fase.							
B () A frequência mais baixa de UHF proporciona maior imunidade a ruído de fundo.							
C () A interação de UHF com estruturas metálicas é reduzida, minimizando perdas por condução superficial.							
D () O menor comprimento de onda do UHF melhora a difração em quinas e bordas, facilitando a cobertura.							
E () Apesar da maior absorção em obstáculos, o comprimento de onda reduzido do UHF permite múltiplos caminhos refletidos, aumentando a disponibilidade do sinal por recepção de ecos.							

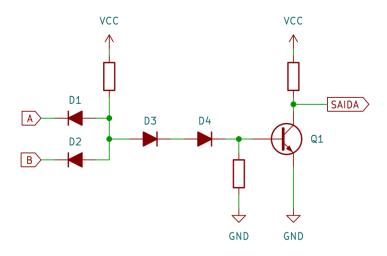

Questão 20. Para o circuito abaixo, qual das alternativas apresenta a corrente de Norton e a resistência de Norton para a carga RL, respectivamente?

- **A** () 0,5A e 17Ω
- **C** () 0,8A e 17Ω
- **E**()1A e 17Ω

- **B** () 0,7A e 15Ω
- \mathbf{D} () 1A e 15 Ω

Questão 21. Considere o circuito com amplificador operacional mostrado na figura abaixo.

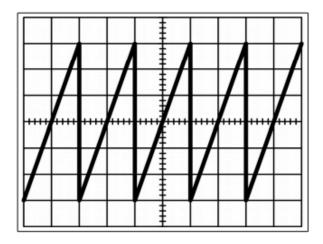
Se o sinal de entrada for $Vi(t) = 0.3196 \text{ sen}((1000/\pi)t)$, o sinal de saída $V_o(t)$ do circuito será:


- **A** () -0,1 sen((1000/ π)t π /2)
- **B** () -0,1 sen($(1000/\pi)t + \pi/2$)
- ${f C}$ () -0,05 sen((1000/ π)t π /2)
- **D** () -0,05 sen((1000/ π)t + π /2)
- E () Nenhuma das anteriores

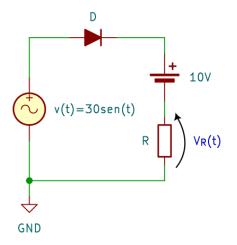
Questão 22. Determine a função booleana simplificada, dada em soma de produtos, correspondente ao mapa de Karnaugh mostrado abaixo.

BA		0.4	44	40
C/	00	01	11	10
0	1	1	0	0
1	1	1	1	0

- **A** () $\overline{B} + AC$
- $\mathbf{B} \ (\ \) \ B + A \overline{C}$
- **C** () $B\overline{C} + A$
- **D** () $B\overline{C} + \overline{A}$
- **E** () $(A + \overline{B})C$


Questão 23. O circuito mostrado a seguir implementa uma lógica usando diodos e um transistor. As referências de tensões para os níveis lógicos 0 e 1 são, respectivamente, terra e +VCC, com valor apropriado.

Convenciona-se que ON quando o componente está conduzindo e OFF o contrário. Se a entrada digital A estiver em nível 0 e a entrada B em 1, os diodos D1, D2 e o transistor Q1 estarão, respectivamente, em:


- A() ON, OFF e OFF
- $\boldsymbol{B}\left(\right)$ OFF, ON e OFF
- C() ON, OFF e ON
- **D**() ON, ON e OFF
- E() OFF, ON e ON

Questão 24. Considere que as escalas vertical e horizontal de um osciloscópio foram configuradas para 1 V/divisão e 0,05 ms/divisão, respectivamente. Nessas condições, a tensão pico a pico e a frequência do sinal mostrado na figura abaixo são, respectivamente:

- **A**() 3,0 V e 20 kHz.
- **B**() 1,5 V e 10 kHz.
- **C**() 1,5 V e 5 kHz.
- **D**() 6,0 V e 10 kHz
- **E**() 3,0 V e 10 kHz

Questão 25. Considere que todos os componentes presentes no circuito mostrado abaixo são ideias. Sobre a forma de onda da tensão $V_R(t)$ sobre o resistor R, em um ciclo da tensão v(t), é correto afirmar que:

- **A** () Apresenta valor máximo de 40 V
- **B** () Apresenta valor mínimo de -20 V
- **C** () Apresenta valor máximo de 20 V
- **D** () Apresenta valor máximo de 19.3 V
- **E** () Nenhuma das anteriores