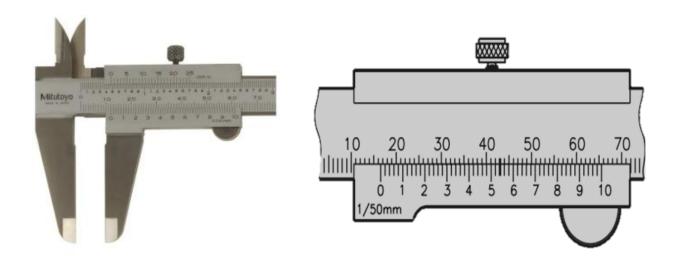


CONCURSO ITA 2025

EDITAL: 04/ITA/2025

CARGO: TÉCNICO

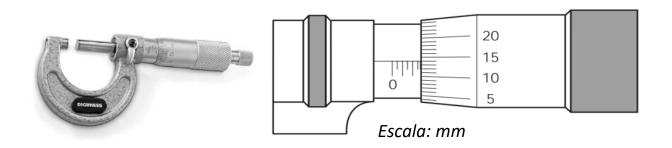
PERFIL: TC-18


CADERNO DE QUESTÕES

- 1. Esta prova tem duração de 4 (quatro) horas.
- Você poderá usar apenas caneta esferográfica de corpo transparente com tinta preta, lápis ou lapiseira, borracha, régua transparente simples e compasso. É proibido portar qualquer outro material escolar ou equipamento eletrônico.
- 3. Esta prova é composta de **50 questões de múltipla escolha: 10 questões de português, 15 questões de matemática e 25 questões específicas do perfil**.
- 4. Você recebeu este **caderno de questões e uma folha óptica** que deverão ser devolvidos no final do exame.
- 5. Cada questão de múltipla escolha admite **uma única resposta**.
- 6. A folha de leitura óptica, destinada à transcrição das respostas às questões de múltipla escolha, deve ser preenchida usando caneta preta. Assinale a opção correspondente à resposta de cada uma das questões de 01 a 50. Você deve preencher todo o campo disponível para a resposta, sem extrapolar os limites, conforme instruções na folha de leitura óptica.
- 7. Cuidado para não errar no preenchimento da folha de leitura óptica. Ela não será substituída.
- 8. Não haverá tempo suplementar para o preenchimento da folha de leitura óptica.
- 9. É obrigatória a devolução do caderno de questões e da folha de leitura óptica, sob pena de desclassificação do candidato.
- 10. Aguarde o aviso para iniciar a prova. Ao terminá-la, avise o fiscal e aguarde-o no seu lugar.

Questão 1. Sobre o fator de segurança de um componente mecânico, é correto afirmar que:

- A () Sua definição não impacta o custo de um componente.
- **B** () Incorpora o conhecimento das propriedades do material, e seu valor é indiferente se aplicado a componentes produzidos a partir de materiais dúcteis ou frágeis.
- **C** () É dependente do tipo de carga aplicada ao componente, assumindo valores superiores para componentes sob carregamento cíclico do que sob carregamento estático.
- **D** () Choques são caracterizados como erros de operação, não fazendo parte dos fatores que influenciam esse fator.
- **E** () É definido como o valor da tensão atuante (de trabalho) dividido pelo valor da tensão admissível no componente.


Questão 2. Considere a seguinte figura e desenho de um paquímetro universal analógico.

Pergunta-se qual a resolução desse instrumento e qual o valor da medição realizada:

- A () Resolução: 0,02 mm; Medição: 16,52 mm.
- **B** () Resolução: 0,02 mm; Medição: 16,54 mm.
- C () Resolução: 0,01 mm; Medição: 16,54 mm.
- **D** () Resolução: 0,02 mm; Medição: 15,52 mm.
- E () Resolução: 0,01 mm; Medição: 15,52 mm.

Questão 3. Considere a figura do micrômetro analógico e um desenho com uma determinada abertura de medição:

Pergunta-se qual a resolução desse instrumento e qual o valor da medição realizada:

- A () Resolução: 0,005 mm; Medição: 2,64 mm.
- **B** () Resolução: 0,02 mm; Medição: 2,14 mm.
- C () Resolução: 0,01 mm; Medição: 2,14 mm.
- **D** () Resolução: 0,02 mm; Medição: 1,14 mm.
- E () Resolução: 0,01 mm; Medição: 2,64 mm.

Questão 4. Qual é o instrumento indicado na figura abaixo?

- **A** () Ajustador interno de furos de três contatos.
- **B** () Calibrador interno de furos de três contatos.
- **C** () Paquímetro digital universal.
- **D** () Micrômetro digital para medidas internas de três contatos.
- **E** () Micrômetro para medidas internas de três contatos ou Imicro.

Questão 5. Observe o desenho e as tabelas e responda às questões, sabendo que a unidade dos valores tabelados está em µm:

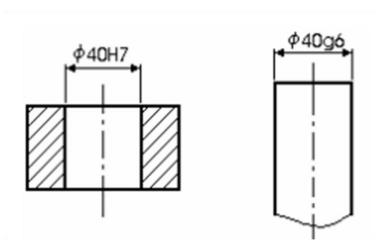
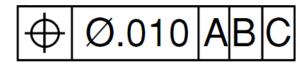


Tabela de Tolerância ISO para FUROS

	a	Г							Ca	mpo	da	Mac	lida	No	mins	al .							
ódigo	omina	ani ma	acima	acima	acima	asima	a si san	acima		acima							a ni ma	acima	acima	acima	acima	acima	ani ma
þø	z	acima 3	6	10	18	30	40	50	65	80	100	120	140	160	180	200	225	250	280	315	355	400	acima 450
O	Mod.	Até	Até	Até	Até	Até	Até	Æé	Æé	Até	Æé	Até	Até	Até	Até	Até	Æé	Até	Até	Até	Até	Até	Até
\vdash	-	6	10	18	30	40	50 ~~	65	80	100	120	140	160	180	200	225	250	280	315	355	400	450	500
E6	Sup.	+28	+34	+43	+53		66 50	+:			94 72	+110		l	+129			+142 +110		+161		+175 +135	
		_	+25	_		_		_		-			+85		⊢	+100				+125			
E7	Sup. Inf	+32	+40	+50	+61		75 50	+9			107	+125		l	+146			62	+1	_		198	
\vdash		+68	+25	+32	+124	_	+50		80	_	72	+85			+100			+110		+125		+135	
E10	Sup.	+20	+25	+32	+ 124		+150 +50			+212 +72		+245 +85		+285 +100			+320 +110		+355 +125		+385 +135		
\vdash		+95	+115	+142	+170	_	+210		+60		+72		+335		+390		+430		+485		+535		
E11	Sup. Inf	+20	+25	+32	+ 40		+50		+60		+72		+85		l	+100		+110		+125		+135	
\vdash	Sup.	+140	+175	+212	+250	_	+300		+360		+422		+485		\vdash	+560		+630		+695		+765	
E12	Inf	+20	+25	+32	+40		+50		+60		+72		+85		l	+100		+110		+125		+135	
	Sup.	+18	+22	+27	+33	+	+41		+49		+58		+68		\vdash	+79		+88		+98		+108	
F6	Inf	+10	+13	+16	+20	+	+25		+30		+36		+43			+50		+56		+62		+68	
F7	Sup.	+22	+28	+34	+41	+	50	+(30	+	71		+83			+96		+1	08	+1	19	+1	131
Γ/	Inf	+16	+13	+16	+20	+	25	+30		+36		+43			+50			+56		+62		+68	
F8	Sup.	+28	+35	+43	+53		64	+76		+90		+106		+122			+137		+151		+165		
10	Inf	+10	+13	+16	+20	_	25	+30		+36			+43		+50			+56		+62		+68	
G6	Sup.	+12	+14	+17	+20		25	+2			34		+39		l	+44		+4	-	+5		+(
	Inf	+4	+5	+6	+7	_	9	+	_	_	12		+14		<u> </u>	+15		+17		+	_	+2	$\overline{}$
G7	Sup.	+16	+20	+24	+28		+34		+40		47		+54		l	+61		+69		+7		+83	
<u> </u>	Inf	+4	+5	+6	+7	_	9			+12			+14		—	+15		+17		+1	_	+20	
Н6	Sup.	+8	+9	+11	+13		+16 +19			+22		+25		+29			+32		+36		+40		
		0	+0	0	0	_	0	0		0		0		0			0		0		0		
H7	Sup.	+12	+15	+18	+21		25	+:			35		+40		l	+46		+5		+5		+(
	int	0	0	0	0		0	()	(0		0			0		(J	()	(0

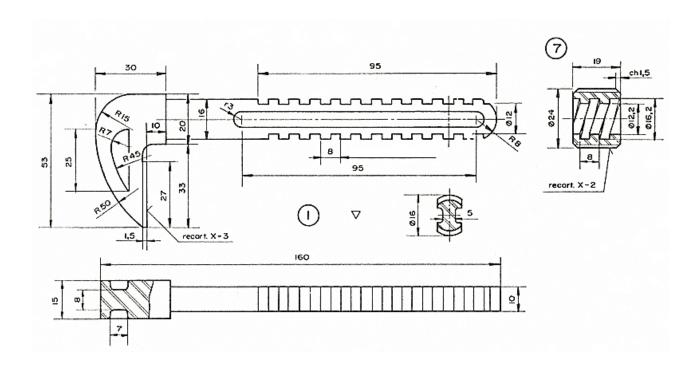

Tabela de Tolerância ISO para eixos

000	nal								(am	no c	de M	ledio	la N	Jomi	nal							
Código	. Nominal	acima 3	adma	adima 10	adma	adma 30	adma 40	adima 50	adima 65	acima 80	acima 100	acima 120	adima	acima 160	acima 180	adma 200	adima 225	adima 250	adima 280	adima 315	acima 355	acima 400	acima 450
	Mod.	Até 6	Até 10	Até 18	Até 30	Até 40	#6 50	Até 65	Até 80	Até 100	Até 120	Até 140	Até 160	Até 180	Até 200	Até 225	Até 250	Até 280	Até 315	Até 355	Até 400	Até 450	#50 Até 500
a 12	Sup. Inf	- 270 - 390	- 280 - 430	- 290 - 470	- 300 - 510	-310 -560	- 320 - 570	- 340 - 640	- 380 - 680	- 380 - 730	-410 -780	- 480 - 800	- 520 - 920	- 580 - 980	- 800 - 1120	- 740 - 1200	- 820 - 1280	- 820 - 1440	- 1050 - 1570	- 1200 - 1770	- 1350 - 1920	- 1500 - 2130	- 1650 - 2280
a 13	Sup. Inf	- 270 - 450	-280 -500	-290 -560	-300 -630	-310 -700	-320 -710	-340 -800	-360 -820	-380 -920	-410 -950	-460 -1090	-520 -1150	-580 -1210	-660 -1380	-740 -1460	-820 -1540	-920 -1730	-1050 -1880	-1200 -2190	-1350 -2240	-1500 -2470	-1650 -2620
c 12	Sup. Inf	- 70 - 190	-80 -230	-95 -110	-110 -320	-120 -370	-130 -380	-140 -440	-150 -450	-170 -520	-180 -530	-200 -600	-210 -610	-230 -630	-240 -700	-260 -720	-280 -740	-300 -820	-330 850	-380 -930	-400 -970	-440 -1070	-480 -1110
d 6	Sup. Inf	-30 -38	49	-50 -61	-65 -78	-6	0 6	-1	-	-1	20 42		-145 -170			-170 -199		-2	90 22	-2 -2	45	-2	30 70
e 6	Sup. Inf	- 20 - 28	-25 -34	-32 -43	49 -53	-6	50 58	-	50 79	-(72 94		-85 -110		-100 -129			-110 -142		-125 -161		-135 -175	
e 7	Sup. Inf	-20 -32	-25 -40	-32 -50	-40 -61		50 75	-60 -90		-72 -107			-85 -100 -125 -146			-110 -162		-125 -182		-135 -198			
e 12	Sup. Inf	- 20 - 140	-25 -175	-32 -212	-40 -250	-3	-50 -60 -300 -360		60	-72 -422		-85 -485		-100 -560		-110 -630		-125 -695		-135 -765			
f 5	Sup. Inf	- 10 - 15	-13 -19	-16 -24	-20 -29	7	25 36	-4	30 13	7.77		-43 -61		-50 -70		-56 -79		-62 -87		-68 -95			
f6	Sup. Inf	- 10 - 18	-13 -22	-16 -27	-20	4	25 11	-4	-30 -49		-36 -58		-43 -50 -68 -79			-56 -88		-62 -98		-68 -108			
g 5	Sup. Inf	-4 -9	-5 -11	-6 -14	-7 -16		9	100	10 23	-12 -27		-14 -32		-15 -36		-17 -40		-18 -43		-20 -47			
g 6	Sup. Inf	-4 -12	-5 -14	-6 -17	-7 -20		9 25		10		12 34		-14 -39			-15 -44			17 49		18 54		20 60
h 5	Sup.	0 5	<u>о</u> ф	O 80	0 9	<u> </u>) 1	100	0 -13		0 -15		0 -18			0 -20			0 23) 25		0 27
h 6	Sup.	ဝ စု	0 9	0 -11	0 -13) 16		0 -19		0 -22		0 -25		0 -29		0 -32		0 -36		0 -40		
h 7	Sup. Inf	0 -12	0 -15	0 -18	0 -21		25	100	0 30		0 35		0			0			0 52		7		0

Quais são os valores de tolerância para medida do furo e do eixo?

- A () Furo: 16 μm; Eixo: 29 μm.
 B () Furo: 25 μm; Eixo: 16 μm.
 C () Furo: 30 μm; Eixo: 39 μm.
- \boldsymbol{D} () Furo: 25 $\mu m;$ Eixo: 34 $\mu m.$
- **E** () Furo: 34 μm; Eixo: 25 μm.

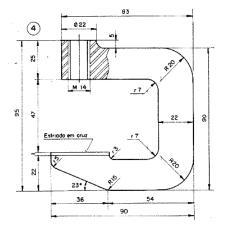
Questão 6. Se o seguinte símbolo constar sobre um desenho técnico, isso significará que:



A () A tolerância de concentricidade da característica deve obrigatoriamente respeitar o limite de 0,010 com relação às referências A, B e C, independentemente da ordem.
B () A tolerância de posição da característica deve obrigatoriamente respeitar o limite de 0,010 com relação às referências A, B e C, independentemente da ordem.
C () A tolerância de concentricidade da característica deve obrigatoriamente respeitar o limite de 0,005 com relação às referências A, B e C, independentemente da ordem.
D () A tolerância de posição da característica deve obrigatoriamente respeitar o limite de 0,010 com relação às referências A, B e C, nessa ordem.
E () A tolerância de posição da característica deve obrigatoriamente respeitar o limite de 0,005 com relação às referências A, B e C, nessa ordem.

Questão 7. No desenho técnico, a função da hachura em um corte é:

- A () Indicar tolerâncias dimensionais.
- **B** () Representar superfícies em contato.
- C () Mostrar material removido pela serra.
- **D** () Em uma seção de corte, diferenciar as partes maciça e oca da peça.
- **E** () Definir o tipo de acabamento superficial.


Questão 8. Os elementos 1 e 7 representam a mandíbula móvel e a porca reguladora de uma Chave de Grifo.

Sobre a rosca, pode se dizer que passo, perfil do filete e comprimento útil são:

- A () Passo: 8 mm; Perfil do filete: 4x2 mm; Comprimento útil: 95 mm.
- **B** () Passo: 4 mm; Perfil do filete: 4x2 mm; Comprimento útil: 95 mm.
- **C** () Passo: 8 mm; Perfil do filete: 4x2 mm; Comprimento útil: 160 mm.
- **D** () Passo: 8 mm; Perfil do filete: 4x4 mm; Comprimento útil: 95 mm.
- **E** () Passo: 4 mm; Perfil do filete: 4x4 mm; Comprimento útil: 95 mm.

Questão 9. Observe o desenho e, de posse da tabela de apoio abaixo, responda.

	VL.	CIDADE					,				
		AÇO 0,20 A 0,30%C (MACIO) E BRONZE	AÇO 0,30 A 0,40%C (MEIO - MACIO)	AÇO 0,40 A 0,50%C (MEIO - DURO) FERRO FUNDIDO	FERRO FUNDIDO (DURO)	FERRO FUNDIDO (MACIO)	COBRE	LATÃO	ALUMÍNIO		
VELOCIDA (m/r	DE-CORTE min)	35	25	22	18	32	50	65	100		
Ø DA BROCA (mm)	AVANÇO (mm/V)	ROTAÇÕES POR MINUTO (FPM)									
1	0,06	11140	7950	7003	5730	10186	15900	20670	31800		
2	0,08	5570	3975	3502	2865	5093	7950	10335	15900		
3	0,10	3713	2650	2334	1910	3396	5300	6890	10600		
4	0,11	2785	1988	1751	1433	2547	3975	5167	7950		
5	0,13	2228	1590	1401	1146	2037	3180	4134	6360		
6	0,14	1857	1325	1167	955	1698	2650	3445	5300		
7	0,16	1591	1136	1000	819	1455	2271	2953	4542		
8	0,18	1392	994	875	716	1273	1987	2583	3975		
9	0,19	1238	883	778	637	1132	1767	2298	3534		
10	0,20	1114	795	700	573	1019	1590	2067	3180		
12	0,24	928	663	584	478	849	1325	1723	2650		
14	0,26	796	568	500	409	728	1136	1476	2272		
16	0,28	696	497	438	358	637	994	1292	1988		
18	0,29	619	442	389	318	566	883	1148	1766		
20	0,30	557	398	350	287	509	795	1034	1590		

DIN 13	ISO 724/96	5.1
D (mm)	P	ø Furo
M 1	0,25	0,75
M 1,1	0,25	0,85
M 1,2	0,25	0,95
M 1,4	0,3	1,1
M 1,6	0,35	1,25
M 1,8	0,35	1,45
M 2	0,4	1,6
M 2,2	0,45	1,75
M 2,5	0,45	2,1
M 3	0,5	2,1
M 3,5	0,6	2,9
M 4	0,7	3,3
M 4,5	0,75	3,8
M 5	0,8	4,2
M 6	1	5,0
M 7	1	6,0
M 8	1,25	6,8
M 9	1,25	7,8
M 10	1,5	8,5
M 11	1,5	9,5
M 12	1,75	10,3
M 14	2	12,0
M 16	2	14,0
M 18	2,5	15,5
M 20	2,5	17,5
M 22	2,5	19,5
M 24	3	21,0
M 27	3	24,0
M 30	3,5	26,5
M 33	3,5	29,5
M 36	4	32,0
M 39	4	35,0
M 42	4,5	37,5
M 45	4,5	40,5
M 48	5	43,0
M 52	5	47,0
M 56	5,5	50,5
M 60	5,5	54,5
M 64	6	58,0
M 68	6	62,0
		- 00

Em relação ao furo roscado, quais são as recomendações para configurar a velocidade de corte (Vc), a rotação (n) e o avanço (f) para o processo de furação? No caso, o material da broca a ser usada é de HSS e o material da peça é Aço ABNT 1045.

- **A** () Vc = 22 m/min; n = 500 rpm; f = 0.26 mm/v (rot).
- **B** () Vc = 25 m/min; n = 500 rpm; f = 0.26 mm/v (rot).
- **C** () Vc = 25 m/min; n = 584 rpm; f = 0.24 mm/v (rot).
- **D** () Vc = 35 m/min; n = 584 rpm; f = 0.26 mm/v (rot).
- E() Vc = 22 m/min; n = 584 rpm; f = 0,24 mm/v (rot).

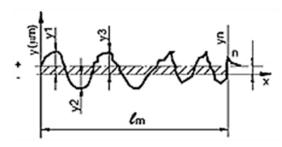
Questão 10. Sobre fluidos de corte para operações de usinagem, é correto afirmar que:


- **A** () Um fluido sintético é usado quando se deseja maior lubricidade do que capacidade de refrigeração no processo de corte.
- **B** () Um óleo integral é usado quando se deseja maior lubricidade do que capacidade de refrigeração no processo de corte.
- C () Um fluido sintético é o tipo de fluido que não é miscível em água.
- **D** () O processo de lubrificação chamado de MQL refere-se ao processo com a máxima quantidade de lubrificante possível.
- **E** () Em comparação aos óleos emulsionáveis, o problema do óleo integral é a maior propensão à criação de bactérias quando parados em reservatório abertos.

Questão 11. Sobre os cavacos I, II e III mostrados na imagem abaixo, é possível afirmar que:

- A () O cavaco I é produto típico da operação de fresamento tangencial.
- **B** () Em uma operação de torneamento de um aço de alta resistência e baixa liga, propõese configurar os parâmetros de corte para como meta a se obter cavacos do tipo II.
- **C** () O cavaco espiral como o mostrado em I é normalmente obtido em processos de torneamento com avanço radial (sangramento).
- **D** () O cavaco longo como o mostrado em III é normalmente obtido em processos de torneamento com avanço radial (sangramento).
- **E** () O cavaco III é produto típico da operação de fresamento tangencial.

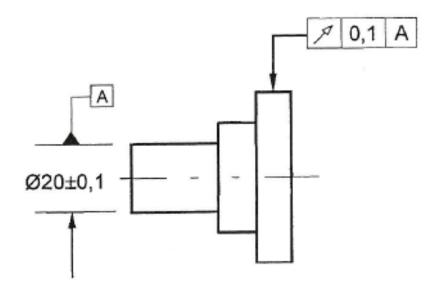
Questão 12. A figura abaixo mostra um mecanismo de desgaste de um inserto de corte. Sobre esse mecanismo é correto afirmar que:


- **A** () Trata-se de um desgaste de flanco, mecanismo inerente de um processo de usinagem.
- **B** () Trata-se de um desgaste de flanco, resultante de um movimento brusco do operador que levou a um choque entre ferramenta e peça.
- **C** () Trata-se de um lascamento, avaria resultante de um movimento brusco do operador que levou a um choque entre ferramenta e peça.
- **D** () Não se trata de um desgaste, mas sim de um problema logo após o processo de revestimento da ferramenta.
- **E** () Trata-se de um desgaste de cratera, resultante de um movimento brusco do operador que levou a um choque entre ferramenta e peça.
- **Questão 13.** Para planejar um processo de torneamento, você recebeu uma inserto de torneamento que possui um código do tipo "WNMG 08 04 08-PM 4325". Ao buscar orientações sobre o uso da ferramenta no catálogo do fabricante, é correto afirmar que:
- A () O catálogo irá dispor apenas das características geométricas da ferramenta.
- **B** () O catálogo indica que a ferramenta é para uso nas classes "P"e "K", o que indica que essa é uma ferramenta tanto para torneamento como para furação.
- **C** () O catálogo indica que a ferramenta é para uso nas classes "P" e "K", o que indica que essa é uma ferramenta tanto para usinagem de aço como de ferro fundido.
- **D** () O catálogo irá dispor apenas das faixas de recomendação para velocidade de corte e avanço.
- **E** () O catálogo indica que a ferramenta é para uso nas classes "P" e "K", o que não impacta nas faixas de recomendação para velocidade de corte e avanço.

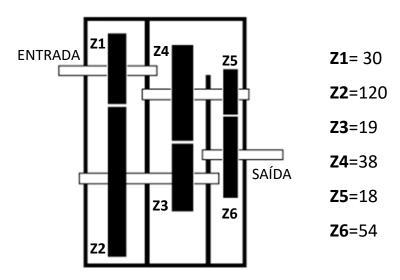
Questão 14. O processo de soldagem por resistência a ponto (RSW) é caracterizado por:

- A () Utilizar arco elétrico como fonte de energia.
- **B** () Empregar pressão e gerar aquecimento local por efeito Joule.
- **C** () Realizar união apenas por ação mecânica, sem calor aportado ou criado durante o processo.
- **D** () Usar eletrodo de tungstênio não consumível.
- E () Ser aplicável apenas em peças fundidas.

Questão 15. Na busca pela avaliação da rugosidade de uma superfície fresada, você se deparou com a equação de "Rugosidade" abaixo.


$$Rugosidade = \frac{y_1 + y_2 + \dots + y_n}{n}$$

Identificar a alternativa correta.


- **A** () A equação de refere à métrica Rz, que define a média aritmética dos valores absolutos de altura do perfil.
- **B** () A equação de refere à métrica Ra, que define a média aritmética dos valores absolutos de altura do perfil.
- **C** () A equação de refere à métrica Rq, que define a média quadrática dos valores absolutos de altura do perfil.
- **D** () A equação de refere à métrica Rz, que define a média quadrática dos valores absolutos de altura do perfil.
- **E** () A equação de refere à métrica Rz, que define a soma do maior pico e vale, ao longo do comprimento de amostragem.

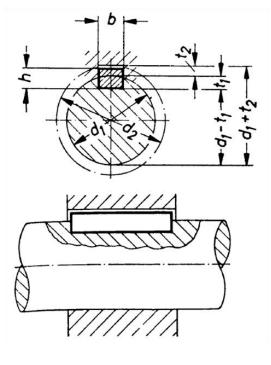
Questão 16. Sobre a avaliação da tolerância geométrica da caixa de controle da figura abaixo, é correto afirmar que:

- **A** () Deve haver controle de concentricidade e coaxialidade da face externa do eixo, o que é feito por meio de um relógio comparador.
- **B** () Deve haver controle de batimento radial da face externa do eixo, o que é feito por meio de um paquímetro digital.
- **C** () Deve haver controle de batimento duplo da face externa do eixo, o que é feito por meio de um paquímetro digital.
- **D** () Deve haver controle de batimento axial da face externa do eixo, o que é feito por meio de um relógio comparador.
- **E** () Deve haver controle de batimento radial da face externa do eixo, o que é feito por meio de um relógio comparador.

Questão 17. A figura abaixo mostra uma caixa de engrenagens, cada uma com os seguintes números de dentes:

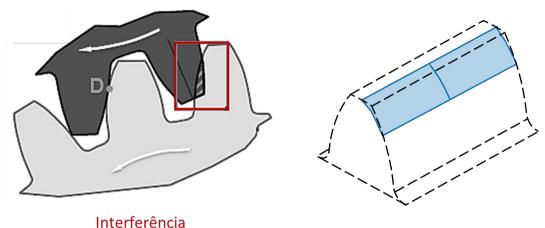
Se o eixo de entrada gira a 3600 rpm, a rotação do eixo de saída será:

- **A** () 1350 rpm.
- **B**() 150 rpm.
- **C** () 450 rpm.
- **D** () 1200 rpm.
- **E** () 1800 rpm.


Questão 18. A marcação "8.8" no parafuso de cabeça hexagonal significa:

- A () Uma classe intrínseca a parafusos de cabeça hexagonal.
- ${f B}$ () Parafuso de classe especial, com 8,8 mm de diâmetro correspondente à área resistente.
- C () Parafuso de classe especial, com 8,8 mm de diâmetro menor (raiz).
- **D** () Classe de resistência mecânica inferior à classe 12.9.
- E () Classe de resistência mecânica inferior à classe 8.9.

Questão 19. Em um eixo de 40 mm de diâmetro, qual deve ser a profundidade do rasgo de chaveta?


Diâmetro			Profundidade do rasgo			
do eixo	Largura	Altura	Eixo t1	Cubo t2		
> 8 a 10	3	3	1,8	1,4		
> 10 a 12	4	4	2,5	1,8		
> 12 a 17	5	5	3	2,3		
>17 a 22	6	6	3,5	2,8		
> 22 a 30	8	7	4	3,3		
> 30 a 38	10	8	5	3,3		
> 38 a 44	12	8	5	3,3		
> 44 a 50	14	9	5,5	3,8		
> 50 a 58	16	10	6	4,3		
> 58 a 65	18	11	6 7	4,4		
> 65 a 75	20	12	7,5	4,9		
> 75 a 85	22	14	9	5,4		
> 85 a 95	25	14	9	5,4		
> 95 a 110	28	16	10	6,4		
> 110 a 130	32	18	11	7,4		
> 130 a 150	36	20	12	8,4		
> 150 a 170	40	22	13	9,4		
> 170 a 200	45	25	15	10,4		
> 200 a 230	50	28	17	11,4		
> 230 a 260	56	32	20	12,4		
> 260 a 290	63	32	20	12,4		
> 290 a 330	70	36	22	14,4		
> 330 a 380	80	40	25	15,4		
> 380 a 440	90	45	28	17,4		
> 440 a 500	100	50	31	19,5		

Dimensões em mm

- **A** () 12 mm.
- **B** () 8 mm.
- **C** () 5 mm.
- **D** () 3,3 mm.
- **E** () 5,5 mm.

Questão 20. Em uma situação de engrenamento com interferência entre o dentado das engrenagens movida e motora, pode ser necessário fazer uma correção de perfil evolvental como a indicada por linhas contínuas e área pintada na parte direita da figura abaixo. Essa correção marcada refere-se a:

- menerence
- **A** () Alívio de topo.
- **B** () Abaulamento de topo.
- C () Abaulamento de perfil.
- **D** () Abaulamento de flanco.
- E () Alívio de pé.

Questão 21. Um aço da classe ABNT 1020 significa:

- **A** () Aço de alta resistência e baixa liga, com teor de cromo e molibdênio em sua composição limitados a 2%.
- **B** () Aço de alta resistência e baixa liga, com 2% de teor de carbono.
- **C** () Aço de alta resistência e baixa liga, com grau de impureza inferior a 0,2%.
- **D** () Aço de alta resistência e baixa liga, com teor de manganês em sua composição limitado a 0,2%.
- **E** () Aço-carbono com 0,2% de teor de carbono.

Questão 22. Para um componente que deva ser necessariamente submetido a um processo de endurecimento de camada por cementação, é correto afirmar que o mais recomendado a se selecionar como matéria-prima é:

- **A** () Uma liga de aço de alta resistência e baixa liga com baixo teor de carbono.
- **B** () Um aço-carbono com baixo teor de carbono.
- **C** () Um aço-carbono com médio teor de carbono.
- **D** () Uma liga de aço de alta resistência e baixa liga com alto teor de carbono.
- **E** () Um aço-carbono com alto teor de carbono.

	estão 23. Qual é o principal propósito da condução de um processo de tratamento erficial e jateamento controlado de granalhas (shot peening)?
A () Aumento do valor de dureza em seu perfil ao longo da profundidade.
В () Transformação da austenita retida em perlita.
C () Indução de um estado trativo de tensões residuais na superfície.
D () Redução do valor de rugosidade média aritmética.
E() Indução de um estado compressivo de tensões residuais na superfície.
Que	stão 24. Um dos principais benefícios da manutenção preventiva é:
A () Redução de custos imediatos sem planejamento.
В () Eliminação definitiva de quebras em todos os equipamentos.
C () Diminuição do tempo de parada não programada.
D() Dispensa da necessidade de inspeções técnicas.
E() Aumento da velocidade de operação dos motores.
	stão 25. Um dos métodos mais comuns de monitoramento que caracteriza a utenção preditiva é:
A () Análise de vibração em máquinas rotativas.
В () Pintura protetiva em superfícies metálicas.
C () Calibração periódica de instrumentos de medição.
D() Inspeção visual de soldas.
E() Reaperto periódico de parafusos estruturais.

