

CONCURSO ITA 2025 EDITAL: 03/ITA/2025

CARGO: TECNOLOGISTA

PERFIL: TL-13

CADERNO DE QUESTÕES

- 1. Esta prova tem duração de 4 (quatro) horas.
- Você poderá usar apenas caneta esferográfica de corpo transparente com tinta preta, lápis ou lapiseira, borracha, régua transparente simples e compasso. É proibido portar qualquer outro material escolar ou equipamento eletrônico.
- 3. Esta prova é composta de **25 questões de múltipla escolha** (numeradas de 01 a 25) e de **3 questões dissertativas**.
- 4. Você recebeu este caderno de questões, uma folha de leitura óptica e um caderno de respostas que deverão ser devolvidos ao final do exame.
- 5. As questões de **múltipla escolha devem ser respondidas na folha de leitura óptica**. Assinale a opção correspondente à resposta de cada uma das questões, de **01 a 25**. Cada questão de múltipla escolha admite uma única resposta.
- 6. A folha de leitura óptica, deve ser preenchida usando caneta preta. Você deve preencher todo o campo disponível para a resposta, sem extrapolar os limites, conforme instruções na folha de leitura óptica.
- 7. Cuidado para não errar no preenchimento da folha de leitura óptica. Ela não será substituída.
- 8. Não haverá tempo suplementar para o preenchimento da folha de leitura óptica.
- 9. As questões dissertativas devem ser respondidas no caderno de respostas. Responda usando caneta preta, no campo destinado a cada questão.
- 10. É obrigatória a devolução do caderno de questões, do caderno de respostas e da folha de leitura óptica, sob pena de desclassificação do candidato.
- 11. Aguarde o aviso para iniciar a prova. Ao terminá-la, avise o fiscal e aguarde-o no seu lugar.

Questão 1. Um termopar é um tipo de sensor de temperatura que se baseia no Efeito Seebeck. Este efeito consiste na:
A () Capacidade de um material de resistir à passagem de corrente elétrica em função da temperatura.
B () Geração de uma diferença de potencial elétrico quando a junção de dois metais distintos é submetida a um gradiente de temperatura.
C () Geração de uma força eletromotriz em um material semicondutor ao ser exposto à luz.
D () Variação do comprimento de um material em resposta à variação de sua temperatura.
E () Alteração da frequência de ressonância de um cristal em função da temperatura.
Questão 2. O conceito de modelagem paramétrica em CAD (Desenho Assistido por Computador) significa, fundamentalmente, a metodologia onde:
A () O projeto é concebido primariamente através de uma árvore de recursos (<i>feature tree</i>) sem dependências mútuas, priorizando a geometria direta em detrimento da lógica construtiva.
B () A geometria tridimensional é regida por um conjunto interdependente de parâmetros (variáveis dimensionais e não-dimensionais), relações lógicas (equações) e restrições (topológicas e geométricas), permitindo que a alteração de um único valor se propague e recalcule o modelo inteiro de forma automática.
C () Os modelos são estáticos após a sua criação inicial, sendo necessário refazer a sequência de operações para qualquer ajuste, caracterizando um método de modelagem direta ou explícita.
D () O foco exclusivo está na criação de malhas poligonais leves e otimizadas para a visualização em tempo real (renderização), desconsiderando a rastreabilidade histórica das operações de <i>sketch</i> e <i>feature</i> .
E () A única função do sistema é traduzir as entidades geométricas em código de máquina (G-code) para fabricação CNC, sem a possibilidade de reverter a ordem das operações de modelagem.
 Questão 3. Em um escoamento de fluidos, o escoamento laminar real é caracterizado por: A () Perfis de velocidade uniformes em toda a seção transversal. B () Mistura intensa de partículas e vórtices. C () Grandes variações de pressão e velocidade. D () Camadas de fluido que deslizam suavemente umas sobre as outras, sem mistura. E () Aumento significativo da temperatura do fluido.

Questão 4. A razão estequiométrica de mistura para a combustão de um propelente de foguete é definida em termos de massa, e corresponde à proporção ideal entre:
A () A massa do combustível e o volume do oxidante.
B () O número de mols do combustível e o número de mols do oxidante para uma reação com excesso de oxigênio.
C () A pressão da câmara de combustão e a velocidade de exaustão.
D () A massa do combustível e a massa do oxidante que resulta em uma combustão completa sem excesso de nenhum dos dois.
E () O empuxo gerado e a taxa de consumo de propelente.
Questão 5. O princípio de conservação de massa para um volume de controle em regime permanente implica que vazão mássica que entra no volume de controle deve ser:
A () Igual à taxa de variação de energia do sistema.
B () Diretamente proporcional à pressão.
C () Igual à vazão mássica que sai.
D () Maior que a vazão mássica que sai.
E () Menor que a vazão mássica que sai.
Questão 6. Sensores passivos:
A () Requerem ser excitados por uma fonte externa de energia para operarem. Esse sinal de excitação é modificado pelo sensor, em função do estímulo (mensurando), para produzir o sinal de saída. Exemplo: medidor de deslocamento potênciométrico.
B () Geram diretamente um sinal elétrico em resposta a um estímulo e retiram energia do processo. Exemplo: termopar.
C () Requerem ser excitados por uma fonte externa de energia para operarem. Esse sinal de excitação é modificado pelo sensor, em função do estímulo (mensurando), para produzir o sinal de saída. Exemplo: termopar
D () Geram diretamente um sinal elétrico em resposta a um estímulo e retiram energia do processo. Exemplo: strain gages.
E () Podem ser programados, via microcontroladores, para funcionar gerando sinal elétrico.
Questão 7. Qual dos sensores de temperatura a seguir tem maior sensibilidade?
A()RTD
B()Termopar
C () Termistor
D () LVTD
E () PT100

Questão 8. O que melhor define o Teorema de Nyquist.
A () Estabelece o erro que ocorre quando um sinal analógico é amostrado com uma frequência insuficiente (superposição)
B () Estabelece que um sinal para ser recuperado de maneira adequada precisa ser amostrado com uma frequência cinco vezes maior que a frequência do mesmo.
C () Estabelece a frequência mínima de amostragem necessária para representar corretamente um sinal analógico no domínio digital, sem perda de informação (sem aliasing).
D () Estabelece como devem ser projetados os filtros anti-aliasing.
E () Estabelece que a resposta total de um sistema linear é a soma das respostas individuais a múltiplas entradas.
Questão 9. Sobre o diagrama de Bode podemos afirmar que:
I. Ele mostra como a amplitude e a fase de saída de um sistema variam em função da frequência da entrada.
II. Ele mostra como a amplitude e a fase de saída de um sistema variam em função da amplitude da entrada.
III. Ele é uma representação gráfica de uma função de transferência de um sistema linear no domínio da frequência.
Das afirmações acima, está(ão) CORRETA(S) apenas:
A () I. B () I e II. C () II. D () I e III. E () III.
Questão 10. RVDT é um tipo de sensor:
A () Temperatura
B () Deslocamento Indutivo
C () Deslocamento Mecânico
D () Pressão Absoluta
E()Pressão Relativa
Questão 11. Seja o uma máquina térmica operando entre as temperaturas de 27º e 327ºC, que absorve 80 kcal da fonte de alta temperatura e rejeita 20 kcal para a fonte de baixa temperatura. Assinale a resposta correta:
A () É um motor reversível.
B () É um motor irreversível.
C () É um motor impossível.
D () É um refrigerador.
E () Não é possível afirmas nenhuma das opções anteriores.

Questão 12. Uma massa de 1 kg de ar inicialmente a 0,5 MPa e 27 °C se expande até o dobro do volume inicial à pressão constante. Considerar a constante do ar como 287 J/kgK, o trabalho realizado pelo ar pelo ar é:

A() 52,4 kJ

B()86,1 kJ

C() 98,3 kJ

D() 108 kJ

E() 113 kJ

Questão 13. Considere uma massa de 2 kg de água à pressão de 0,35 MPa ocupando um volume de 1 m³. Com base na tabela abaixo, em que estado se encontra a água?

Pressão Temp.		Volume específico		Energia interna			Entalpia			Entropia		
P	T	v_l	v_v	u_l	u_{lv}	u_v	h_l	$h_l v$	v	S_l	S_{lv}	S_v
MPa	°C	m³/kg	m³/kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg	kJ/kg	kJ/kgK	kJ/kgK	kJ/kgK
0,300	133,55	0,0010073	0,6058	561,15	1982,4	2543,6	561,47	2163,8	2725,3	1,6718	5,3201	6,9919
0,325	136,30	0,0010076	0,5620	572,90	1973,5	2546,4	573,25	2155,8	2729,0	1,7006	5,2646	6,9652
0,350	138,88	0,0010079	0,5243	583,95	1965,0	2548,9	584,33	2148,1	2732,4	1,7275	5,2130	6,9405
0,375	141,32	0,0010081	0,4914	594,40	1956,9	2551,3	594,81	2140,8	2735,6	1,7528	5,1647	6,9175
0,40	143,63	0,0010084	0,4625	604,31	1949,3	2553,6	604,74	2133,8	2738,6	1,7766	5,1193	6,8959

A () Vapor saturado.	B () Vapor superaquecido.	C () Líquido comprimido.
D() Líquido saturado.	E () Mistura de líquido mais	vapor.

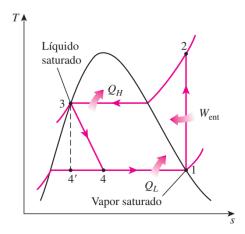
Questão 14. Uma parede separa um recinto a 20 °C do ambiente a 40 °C. Sabendo que a parede possui espessura de 20 cm e condutividade térmica de 4 W/m°C e que os coeficientes de convecção externo e interno são 10 W/ °Cm² e 5 W/ °Cm², respectivamente, qual o fluxo de calor através da parede?

A () 12,9 W/m2

B() 25,5 W/m2

C () 32,5 W/m2

D () 49,1 W/m2


E () 57,1 W/m2

Questão 15. Considere duas paredes planas paralelas infinitas, que se comportam como corpos negros. Uma parede está a 30° C e a outra a 270° C. Qual o fluxo de calor entre as superfícies das paredes? Considere a constante de Stefan-Boltzmann igual a 5,67 x 10 ⁻⁸ Wm ⁻² K ⁻⁴ .
A () 0,3 KW/m2
B () 2,5 KW/m2
C () 3,8 KW/m2
D () 4,5 KW/m2
E () 5,2 KW/m2
Questão 16. A variável sobre a qual um controlador atua, em um dado processo, pode ser tratada, no caso geral, como uma equação onde aparecem os ganhos (kp, ki e kd) de cada etapa da ação do controlador. Para implementar o controlador são necessários tais ganhos. Assinale a afirmação correta.
A () Os ganhos são kp, ki e kd, ganho proporcional, ganho integral e ganho derivativo, respectivamente.
B () Os ganhos são kp, ki e kd, ganho pontual, ganho interno e ganho divisor, respectivamente.
C () Os ganhos são kp, ki e kd, ganho proporcional, ganho instantâneo e ganho derivativo, respectivamente.
D () Os ganhos são kp, ki e kd, ganho parcial, ganho interno e ganho divisor, respectivamente.
E () Os ganhos são kp, ki e kd, ganho pontual, ganho instantâneo e ganho divisor, respectivamente.
 Questão 17. Um sinal analógico, cuja frequência é igual a 56 Hz, deve ser perfeitamente reconstruído a partir de amostras digitais. Assinale a afirmação absolutamente correta. A () A taxa de amostragem do sinal analógico seja < 56 Hz. B () A taxa de amostragem do sinal analógico mencionado seja > 28 Hz. C () A taxa de amostragem do sinal analógico mencionado seja > 112 Hz. D () A taxa de amostragem do sinal analógico mencionado seja > 56 Hz. E () A taxa de amostragem do sinal analógico mencionado seja < 112 Hz.

Questão 18 . Escolha, entre as alternativas abaixo, aquela que pode definir o diagrama de Bode da melhor maneira.
A () Representação gráfica de um sistema dinâmico composto por um gráfico de magnitude (dB) e de erro relativo (%).
B () Representação gráfica de um sistema dinâmico composto por um gráfico de magnitude (dB).
C () Representação gráfica de um sistema dinâmico composto por um gráfico de fase (graus).
D () Representação gráfica de um sistema dinâmico composto por um gráfico de magnitude (dB) e de fase (graus).
E () Representação gráfica de um sistema dinâmico composto por um gráfico de erro relativo (%) e de fase (graus).
Questão19 . Dado que a função, no domínio do tempo, que descreve um controlador PID genérico, pode ser escrita como u(t) = Kp * e(t) + Ki * \int e(t) dt + Kd * d(e(t))/dt, onde e(t) é a função erro. Podemos então escrever a correspondente função de transferência G(s). Escolha a alternativa correta.
A () G(s)= kp+ki* 1/s +kd*s
B () $G(s) = kp^*s + ki^* \frac{1}{s} + kd$
C () G(s)= kp*1/s+ki* 1/s +kd
D () G(s)=kp+Ki+kd)*s
E () G(s)=kp+Ki+kd)*1/s
Questão 20. Sobre a transformada Z é certo dizer que
A () A Transformada Z pode ser considerada uma ferramenta matemática para converter um sinal contínuo e periódico, do domínio do tempo, para o domínio da frequência (domínio Z).
B () A transformada Z pode ser considerada uma ferramenta matemática para converter um sinal discreto do domínio do tempo para o domínio da frequência complexa (domínio Z).
C () A Transformada Z pode ser considerada uma ferramenta matemática para converter um sinal contínuo, do domínio do tempo, para o domínio da frequência (domínio Z).
D () A transformada Z pode ser considerada uma ferramenta matemática para converter um sinal senoidal, do domínio do tempo, para o domínio da frequência complexa (domínio Z).
E () A transformada Z pode ser considerada uma ferramenta matemática para converter um sinal exponencial, do domínio do tempo, para o domínio da frequência complexa (domínio Z).

	estão 21. Os bocais são dispositivos que aumentam a velocidade de um fluido à custa pressão. Assinale a afirmação CORRETA:
A () A taxa de transferência de calor é grande e não pode ser desprezada.
В () Os bocais normalmente não envolvem trabalho.
C () A variação de energia potencial geralmente não pode ser desprezada.
D () As variações de velocidade podem ser geralmente desprezadas.
E() As variações de energia cinética podem ser geralmente desprezadas.
e de func de	estão 22. Células de carga são estruturas mecânicas planejadas para receber esforços eformar-se dentro do regime elástico para que foram planejadas. O princípio de cionamento baseia-se na variação da resistência ôhmica de um extensômetro elétrico resistência quando submetido a uma deformação. Assinale qual das seguintes mativas não representa uma característica do extensômetro elétrico de resistência:
A () Alta precisão de medida.
В () Excelente resposta dinâmica.
C () Baixa linearidade.
D () Baixo custo.
E() Efetuar medidas a distância.
	estão 23. No diagrama P-v (pressão e volume) de um ciclo Brayton, a área delimitada curva do processo representa:
A () O trabalho líquido produzido durante o ciclo.
В () O calor total fornecido durante o ciclo.
C () O calor total rejeitado durante o ciclo.
D () O trabalho total gerado pela turbina.
E() O trabalho total necessário para acionar o compressor.

Questão 24. Questão 1. A figura a seguir apresenta o diagrama T-s do ciclo ideal de refrigeração por compressão de vapor:

- I. O processo 1-2 representa a compressão isentrópica em um compressor.
- II. O processo 3-4 representa o estrangulamento em um dispositivo de expansão.
- III. QL é a magnitude do calor removido do espaço refrigerado à temperatura TL.
- IV. O processo 2-3 representa a absorção de calor a pressão constante em um evaporador.
- V. O processo 4-1 representa a rejeição de calor a pressão constante em um condensador.

Das afirmações acima, está(ão) INCORRETA(S) apenas:

$$\label{eq:Bounds} \textbf{B} \ (\) \ \textbf{IV} \ \textbf{e} \ \textbf{V}. \qquad \quad \textbf{C} \ (\) \ \textbf{III} \ \textbf{e} \ \textbf{IV}. \qquad \quad \textbf{D} \ (\) \ \textbf{II} \ \textbf{e} \ \textbf{V}. \qquad \quad \textbf{E} \ (\) \ \textbf{II} \ \textbf{e} \ \textbf{III}.$$

Questão 25. Termopar é um tipo de sensor de temperatura que pode usar diferente tipos de junção.

- I. Em termopar com junção exposta a junção quente fica exposta na ponta do sensor o que proporciona um tempo de resposta extremamente rápido e uma grande sensibilidade a pequenas alterações de temperatura.
- II. Em termopar com junção aterrada, a junção é soldada junto com a bainha o que proporciona um tempo de resposta intermediário entre a junção exposta e a junção isolada. Esse tipo de termopar proporciona total imunidade a ruídos.
- Em termopar com junção isolada, a junção é isolada e interna o que proporciona um aumento no tempo de resposta, mas proporciona boa proteção e imunidade a ruídos.

Das afirmações acima, está(ão) CORRETA(S) apenas:

A () I.

B() lell.

C() | | | **D**() | | | e | | |

E() le III.

QUESTÕES DISSERTATIVAS

Questão 1- O compressor de uma grande turbina a gás recebe ar do meio a 95 kPa, 21 °C. Na descarga do compressor a pressão é de 0,38 MPa, a temperatura é de 130 °C e a velocidade de 130 m/s. A potência de acionamento do compressor é de 4000 HP. Determinar a vazão de ar em kg/h. Considere que o compressor está disposto horizontalmente e que a velocidade de admissão é desprezível.

Dados:

```
R_{AR} = 287,1 J/kgK
Constante isentrópica do ar: \gamma = 1,4
1 HP = 745,7 W
```

Questão 2 - Escreva um texto dissertativo, de no mínimo 15 linhas e no máximo 40 linhas, indicando o conjunto de sistemas de medição sugerido para equipar uma câmara de combustão de turbina a gás operando com gás natural em uma bancada experimental de laboratório.

O texto deve contemplar, de forma organizada e fundamentada:

- 1. Os **instrumentos ou sensores** adequados para a determinação das seguintes propriedades:
 - o Pressão;
 - o Temperatura;
 - o Vazão de combustível;
 - o Vazão de ar.
- 2. As **características desejáveis** desses instrumentos no contexto de ensaios experimentais (faixa de medição, tempo de resposta, robustez, precisão, etc.).
- 3. Sugestões para a sincronização dos sistemas de medição.
- 4. Estratégias para a **aquisição e tratamento dos dados experimentais**, visando confiabilidade dos resultados.

Questão 3 — Descreva o controle de temperatura baseado em um controlador PID apresentando o diagrama em blocos do controlador, as funções de tais blocos e as etapas do controle. Indique todos os componentes e grandezas.

