

CONCURSO ITA 2025 EDITAL: 03/ITA/2025

CARGO: TECNOLOGISTA

PERFIL: TL-18

CADERNO DE QUESTÕES

- 1. Esta prova tem duração de 4 (quatro) horas.
- Você poderá usar apenas caneta esferográfica de corpo transparente com tinta preta, lápis ou lapiseira, borracha, régua transparente simples e compasso. É proibido portar qualquer outro material escolar ou equipamento eletrônico.
- 3. Esta prova é composta de **25 questões de múltipla escolha** (numeradas de 01 a 25) e de **3 questões dissertativas**.
- 4. Você recebeu este caderno de questões, uma folha de leitura óptica e um caderno de respostas que deverão ser devolvidos ao final do exame.
- 5. As questões de **múltipla escolha devem ser respondidas na folha de leitura óptica**. Assinale a opção correspondente à resposta de cada uma das questões, de **01 a 25**. Cada questão de múltipla escolha admite uma única resposta.
- 6. A folha de leitura óptica, deve ser preenchida usando caneta preta. Você deve preencher todo o campo disponível para a resposta, sem extrapolar os limites, conforme instruções na folha de leitura óptica.
- 7. Cuidado para não errar no preenchimento da folha de leitura óptica. Ela não será substituída.
- 8. Não haverá tempo suplementar para o preenchimento da folha de leitura óptica.
- 9. As questões dissertativas devem ser respondidas no caderno de respostas. Responda usando caneta preta, no campo destinado a cada questão.
- 10. É obrigatória a devolução do caderno de questões, do caderno de respostas e da folha de leitura óptica, sob pena de desclassificação do candidato.
- 11. Aguarde o aviso para iniciar a prova. Ao terminá-la, avise o fiscal e aguarde-o no seu lugar.

Questão 1. O que representa um plano de manutenção, e qual o seu objetivo?
A () É uma lista de verificações para uma tarefa de manutenção, onde são especificadas quais ferramentas, quais insumos, quais e quantos técnicos e quanto tempo deve levar a execução da tarefa.
B () É um documento que lista todas as tarefas de manutenção corretiva necessárias, com o objetivo de registrar as falhas e garantir que elas sejam resolvidas de forma econômica.
C () Especifica quais tarefas de manutenção, tanto preventivas quanto corretivas, serão realizadas, além de detalhar quando e onde elas devem ocorrer para garantir a prontidão do ativo de forma eficaz e segura.

D () Consiste em banco de dados, cujo objetivo é servir como um registro histórico para documentar falhas passadas, focando mais na análise do que aconteceu do que no planejamento de ações futuras.

E () É um processo contínuo de definição das demandas de manutenção e tem por objetivo restaurar o sistema à condição de novo.

Questão 2. O conceito de Manutenção Centrada na Confiabilidade (MCC) é amplamente utilizado nos sistemas aeronáuticos. Qual das seguintes alternativas melhor descreve o conceito de MCC e as principais entradas para sua análise?

- **A** () É uma metodologia focada exclusivamente na substituição de componentes em intervalos fixos de tempo, independentemente de sua condição, para maximizar a vida útil do equipamento. As principais entradas são o custo de reposição e o cronograma de produção.
- **B** () É uma metodologia que estabelece um programa de manutenção preventiva custoefetivo para preservar as funções de um ativo. As entradas essenciais para essa análise são: funções, falhas funcionais, modos de falha, efeitos e consequências.
- **C** () É uma abordagem reativa que consiste em reparar os ativos somente após a ocorrência de uma falha. Sua principal entrada é o relatório de quebra do equipamento, visando o restabelecimento da função o mais rápido possível.
- **D** () É um programa de manutenção focado em reduzir os custos operacionais ao mínimo, utilizando principalmente a análise de vibração e termografia como únicas entradas para decidir as intervenções.
- **E** () Consiste num programa de manutenção baseada na condição, capaz de predizer a vida remanescente do item, tendo como insumos básicos de entrada informações medidas em sensores embarcados.

	estão 3. Qual das alternativas melhor representa o papel da engenharia logística no orte a sistemas aeroespaciais de defesa?	
A () Desenvolver novas tecnologias de suporte de defesa e de inovação tecnológica.	
В () Gerenciar a cadeia de suprimentos de peças e estoques de componentes.	
C () Coordenar e executar o conjunto de operações militares de elevada complexidade.	
D () Gerenciar e desenvolver o desempenho de custo efetividade de suporte do sistema	
E(ape) Gerenciar e desenvolver os requisitos de desempenho operacional dos sistemas, nas.	
	e stão 4. Quais são os principais desafios logísticos enfrentados pelos sistemas pespaciais de defesa?	
A () Gerenciar a complexidade dos sistemas de armas.	
В () Garantir a disponibilidade de peças e componentes.	
C () Minimizar os custos de manutenção e reparo.	
D (() Gerenciar o desempenho de custo de suporte do sistema.	
E () Todas as alternativas acima.	
Questão 5. Quais são as principais atividades de desenvolvimento do suporte logístico para sistemas aeronáuticos?		
A () Manutenção e reparo de equipamentos.	
В () Gerenciamento de estoque e distribuição de peças.	
C () Análise de Suportabilidade e de Custo do Ciclo de vida.	
D () Planejamento e execução de operações de logística.	
E () Publicação e atualização de manuais técnicos e dados de engenharia.	

Questão 6. Seja um sistema eletrônico de comando de leme formado por um canal de comando (C) e um de monitoramento (M), com confiabilidades Rc = 80% e Rm =90% respectivamente. Caso o canal de comando falhe, tentando propagar um comando inadvertido, o canal de monitoramento, caso esteja funcionando normalmente, é capaz de detectar essa falha e, conservadoramente, interromper a operação do comando, evitando a sua propagação. Nesse caso, o sistema do leme fica inoperante. Sendo assim, o leme poderá falhar de dois modos distintos: propagando um comando inadvertido, ou ficando inoperante. Considere que na falha de qualquer um dos canais, o leme sempre irá falhar. Quais as probabilidades de acontecer a propagação de um comando inadvertido do leme e de haver um evento de leme inoperante?

A () Comando inadvertido: 72%,
B () Comando inadvertido: 72%,
C () Comando inadvertido: 8%,
D () Comando inadvertido: 2%,
E () Comando inadvertido: 2%,
Comando inoperante: 26%
Comando inoperante: 26%
Comando inoperante: 18%

Questão 7. Qual é o objetivo da manutenção preventiva em sistemas de aeronáuticos?

- A () Corrigir falhas após elas ocorrerem.
- **B** () Prevenir falhas antes que elas ocorram.
- C () Reduzir os custos de manutenção.
- **D** () Aumentar a complexidade dos sistemas.
- **E** () Uso de dados para prover um prognostico da falha

Questão 8. Qual das seguintes atividades representa o ciclo completo de manutenção de um sistema aeronáutico de defesa?

- A () Execução de reparos e substituição de componentes.
- **B** () Avaliação contínua do desempenho e detecção de falhas
- **C** () Implementação de planos de manutenção preventiva e corretiva.
- **D** () Realização de ajustes finos e calibração de sensores.
- E () Uso de dados para prover um diagnóstico e prognostico da falha

- **Questão 9.** Quais são os 12 elementos do Apoio Integrado do Produto (do inglês *Integrated Product Support* -IPS) de acordo com o ASD/AIA. SX000i *International Specification for Integrated Product Support* (IPS)?
- **A** () Facilidades e Infraestrutura, Manutenção, Programação de SW, Mão de Obra, Treinamento, Ferramental, Recursos de Computação, Interface de desenho, Suporte continuado de Engenharia, Gerenciamento do Suporte ao Produto, Operações relacionadas à Logística, e Dados Técnicos.
- **B** () Facilidades e Infraestrutura, Manutenção, Suprimentos, Mão de Obra, Treinamento, Ferramental, Recursos de Computação, Interface de desenho, Interface de SW, Gerenciamento do Suporte ao Produto, Operações relacionadas à Logística, e Dados Técnicos.
- **C** () Facilidades e Infraestrutura, Manutenção, Suprimentos, Mão de Obra, Treinamento, Ferramental, Recursos de Computação, Interface de desenho, Suporte continuado de Engenharia, Gerenciamento do Suporte ao Produto, Operações relacionadas à Logística, e Dados Técnicos.
- **D** () Facilidades e Infraestrutura, Manutenção, Suprimentos, Treinamento, Ferramental, Recursos de Computação, Interface de desenho, Suporte continuado de Engenharia, Gerenciamento do Suporte ao Produto, Operações relacionadas à Logística, e Dados Técnicos.
- **E** () Facilidades e Infraestrutura, Suprimentos, Mão de Obra, Treinamento, Ferramental, Recursos de Computação, Interface de desenho, Suporte continuado de Engenharia, Gerenciamento do Suporte ao Produto, Operações relacionadas à Logística, e Dados Técnicos.
- **Questão 10.** Qual é a principal diferença entre manutenção programada e manutenção não programada?
- **A** () A manutenção programada é realizada em intervalos regulares, enquanto a manutenção não programada é realizada em resposta a uma falha inesperada.
- **B** () A manutenção programada é mais cara do que a manutenção não programada.
- **C** () A manutenção programada é realizada por pessoal não qualificado, enquanto a manutenção não programada é realizada por pessoal qualificado.
- **D** () A manutenção programada é realizada apenas em sistemas críticos, enquanto a manutenção não programada é realizada em todos os sistemas.
- **E** () A manutenção preventiva é programada de acordo com os dados de falha

Questão 11. Qual das definições abaixo, mais se adequa à Manutenibilidade?
A()Capacidade de um sistema ou equipamento de realizar suas funções sem falhas
B () Capacidade de um sistema ou equipamento de ser mantido ou reparado de forma eficiente e eficaz
C()Capacidade de um sistema ou equipamento de ser operado de forma segura
D () Capacidade de um sistema ou equipamento de ser projetado para atender às necessidades do usuário
E () Capacidade de um sistema ou equipamento de atender às especificações de qualidade.
Questão 12. Segundo a perspectiva de Manutenibilidade de Benjamin Blanchard, qual é o principal fator que influencia a facilidade e eficácia da manutenção de um sistema?
A () O projeto e design do sistema, incluindo acessibilidade e padronização de componentes
B () A qualidade dos componentes e materiais utilizados na manufatura do produto aeronáutico
C () O nível de treinamento, de formação e de experiência da equipe de mantenedores e técnicos
D () A disponibilidade de ferramentas, bancadas de testes/calibração e equipamentos de manutenção especializados
E()A quantidade e qualidade de itens e peças acondicionadas nos estoques
Questão 13. Segundo a metodologia de Benjamin Blanchard para a engenharia da manutenibilidade, qual é o seu principal impacto durante a fase de projeto para contribuir para a redução dos custos de ciclo de vida?
A () Melhorar o desempenho operacional da aeronave no que diz respeito à sua integridade estrutural.
B () Aumentar a disponibilidade dos equipamentos, permitindo um maior tempo de operação ativa.
C () Melhorar a segurança de voo e a operacional ao reduzir a frequência de falhas críticas.
D () Estender a vida útil do equipamento por meio de manutenções, postergando o custo de substituição.
E()Minimizar o tempo e complexidade das tarefas de manutenção, impactando diretamente seus custos

Questão 14. Dentre os indicadores de manutenção, destaca-se a disponibilidade inerente do sistema, representada por Ai. Considerando o tempo médio de reparo do sistema como MTTR (*Mean Time to Repair*), e a taxa de falha desse sistema como λ , estime a disponibilidade inerente, considerando uma função densidade de probabilidade de falhas exponencial.

A ()
$$A_i = \frac{\lambda}{\lambda + MTTR}$$

$$\mathbf{B} \ (\) \ \mathbf{A}_{i} = \frac{\lambda}{1 + \lambda \cdot \mathbf{MTTR}}$$

C ()
$$A_i = \frac{1}{1 + \lambda \cdot MTTR}$$

D ()
$$A_i = \frac{1}{\lambda + MTTR}$$

E ()
$$A_i = \frac{1}{\lambda - MTTR}$$

Questão 15. Um determinado item apresenta maior incidência de falhas para unidades mais velhas. Em que região da curva da banheira tais falhas estão acontecendo? O que se pode afirmar sobre a variação da taxa de falhas neste caso?

- A () Região de mortalidade infantil. Taxa de falhas decrescente.
- **B** () Região de maturidade. Taxa de falhas constante.
- C () Região de aleatoriedade. Taxa de falhas crescente.
- **D** () Região de degradação. Taxa de falhas crescente
- E () Região de degradação. Taxa de falhas decrescente

Questão 16. Um sistema é composto de três componentes 1, 2 e 3, com confiabilidade 0,9; 0,8 e 0,7, respectivamente. O componente 1 é indispensável ao funcionamento do sistema; se 2 ou 3 não funcionam, o sistema funciona, mas com um rendimento inferior. A falha simultânea de 2 e 3 implica o não-funcionamento do sistema. Supondo que os componentes funcionem independentemente, calcular a confiabilidade do sistema.

- **A**() 0.846
- **B**() 0.504
- **C**() 0.994
- **D**() 0.800
- **E**() 0.813

Questão 17. Para um dispositivo com probabilidade de falha de 0,2 quando submetido a um ambiente de teste específico, use a distribuição binomial para calcular as probabilidades de que uma amostra de teste de 5 dispositivos conterá (i) nenhuma falha; (ii) uma falha; (iii) mais de uma falha. Assinale a alternativa que mais se aproxima da resposta correta.

```
A ( ) (i) 0,03% (ii) 0,64% (iii) 99,33% 

B ( ) (i) 0,03% (ii) 51,20% (iii) 48,77% 

C ( ) (i) 32,77% (ii) 51,20% (iii) 16,03% 

D ( ) (i) 32,77% (ii) 40,96% (iii) 26,27% 

E ( ) (i) 32,77% (ii) 16,03% (iii) 51,20%
```

Questão 18. Qual a definição de um item reparável? Liste dois exemplos de itens reparáveis.

- **A** () Definição: Item cujo reparo é economicamente viável. Exemplos: lâmpada florescente, unidade eletrônica de controle.
- **B** () Definição: Item cujo reparo é técnica e economicamente viável. Exemplo: atuador hidráulico de aeronave, unidade eletrônica de controle.
- **C** () Definição: Item cujo reparo é tecnicamente viável. Exemplos: lâmpada florescente, selo dinâmico de vedação (o'ring).
- **D** () Definição: Item cujo reparo é técnica e economicamente viável. Exemplo: atuador hidráulico de aeronave, selo dinâmico de vedação (o'ring).
- **E** () Definição: Item cujo reparo é economicamente viável. Exemplo: lâmpada florescente, selo dinâmico de vedação (o'ring).

Questão 19. Dada a série histórica a seguir de demanda por um determinado item, determine o risco de a quantidade do item ir a zero no estoque (*ROS - Risk of Shortage*), caso a quantidade S de itens em estoque no início do mês seja igual a 2 ou 3 itens respectivamente:

A () ROS (S=2) = 68,2%, ROS (S=3)= 13,6%

B () ROS (S=2) = 36,4%, ROS (S=3)= 68,2%

C () ROS (S=2) = 36,4%, ROS (S=3)= 13,6%

D () ROS (S=2) = 68,2%, ROS (S=3)= 36,4%

E () ROS (S=2) = 65,2%, ROS (S=3)= 12,6%

ANO	Demanda mensal
1997	0
1998	1
1999	3
2000	2
2001	0
2002	2
2003	3
2004	4
2005	1
2006	2
2007	1
2008	0
2009	3
2010	5
2011	2
2012	1
2013	2
2014	2
2015	1
2016	3
2017	4
2018	2

Questão 20. Qual é o objetivo do suporte continuado de engenharia (do inglês <i>Sustaining Engineering</i>)?				
A () Garantir a operação segura e eficiente de sistemas e equipamentos			
В() Reduzir os custos de manutenção e reparo			
C () Melhorar a confiabilidade e disponibilidade de sistemas.			
D () Análise de falhas e diagnóstico de problemas.			
E() Todas as alternativas acima			
Questão 21. Qual é (são) o(s) benefício(s) do uso de recursos computacionais no suporte integrado de produto?				
A () Reduzir os custos de manutenção e reparo			
В() Melhorar a eficiência e eficácia do suporte técnico			
C () Aumentar a disponibilidade e confiabilidade do produto			
D () Reduzir os erros humanos			
E() Todas as alternativas acima			
Questão 22. Quais são os principais fatores que influenciam a gestão de estoques de peças aeronáuticas?				
A () Demanda histórica, lote econômico e previsão de demanda			
В () Tempo de prateleira, custo da peça, peso, volume e tamanho			
C () Custo e criticidade da peça, taxa de falha e tempo de entrega			
D () Tempo de prateleira, custo e peso da peça e previsão de demanda			
E () Lote economico, previsão de demanda e custo do pedido.			
Questão 23. Considerando uma parada para manutenção não programada em uma aeronave, analise as afirmações:				
1. In	nplica redução da disponibilidade da frota			
2. Implica aumento dos custos de manutenção e reparo				
3. In	nplica risco de segurança para os operadores e para a missão			
4. Implica levar mais tempo que uma parada programada				
A () 1 e 4 corretas			
-) 2 e 3 corretas			
•) 1 e 3 corretas			
`) 1 e 2 corretas			
`) 2 e 4 corretas			

Questão 24. A aeronave Airbus A320 possui três computadores para o controle do profundor, chamado de SEC (*Spoiler Elevator Computer*). A falha em qualquer um dos dispositivos é facilmente identificada. Esta aeronave pode ser despachada com um dos SECs em falha, deste que não seja o SEC instalado em uma posição (número) específica. Podemos considerar que falha em um dos SEC, não representa um evento extremamente improvável. Todavia, mesmo se ocorressem falhas simultâneas nos 3 SECs, outro computador de voo ainda pode assumir o controle da referida superfície de controle. No contexto de Análise de Modo e Efeito de Falha, quais características da falha devem ser analisadas pelo time de engenharia?

- **A** () Taxa de falha, proficiência do time de manutenção, capacidade da tripulação em reagir ao evento de falha, combinações adversas com outras falhas
- **B** () Taxa de falha, efeito da falha na aeronave, meios de detecção da falha, características do sistema ou da operação que mitigam efeitos da falha
- **C** () Treinamento da tripulação e do time de manutenção para reagir à condição de falha, efeito da falha nos passageiros e na aeronave, condição de voo na qual a falha ocorre
- **D** () Probabilidade de ocorrência da falha, combinação com falhas de outros sistemas, combinação da falha com possíveis desvios operacionais
- **E** () Análise de modo comum de falha, avaliação de desvios operacionais e efeito da falha na aeronave, na tripulação e nos ocupantes

Questão 25. Sobre os indicadores MTBF (*Mean Time Between Failures*), MTTF (*Mean Time To Failure*) e MTTR (*Mean Time To Repair*), considere as afirmações a seguir:

- I. MTBF e MTTF são indicadores de confiabilidade.
- II. Valores baixos de MTBF e MTTF indicam boa maturidade do produto.
- **III.** Um valor de MTTF de um item muito mais baixo que o MTBF indica mortalidade infantil.
- IV. O MTTR é um indicador de manutenibilidade
- V. O MTTR é um indicador que aumenta com a maturidade do sistema

Estão corretas as afirmações:

A () I, II e IV apenas
В () III e IV apenas
C () I, III e IV apenas
D () I, IV e V apenas
Ε() Todas as afirmações

Questão Aberta 1. Como o **Planejamento e Gestão da Manutenção** se integra aos outros elementos do Suporte Integrado do Produto (do Inglês *Integrated Product Support - IPS*) para garantir a disponibilidade do produto ao longo das fases do ciclo de vida (Concepção; Desenvolvimento; Manufatura; Operação e Suporte; e Descarte) de um produto aeronáutico?

Questão Aberta 2. Um sistema de bombeamento composto por 5 unidades idênticas, consegue executar a função de bombeamento caso 3 destas unidades estejam operacionais. Determine a confiabilidade equivalente do sistema num determinado instante de tempo, assumindo que a confiabilidade de cada uma das unidades corresponde a R(t).

Questão Aberta 3. Suponha que você seja responsável pelos aspectos de Confiabilidade de um sistema que contém elementos eletrônicos e mecânicos. O cliente do sistema exige que seja fornecida uma previsão numérica de confiabilidade:

- ✓ Descreva o que significa "previsão de Confiabilidade" neste contexto.
- ✓ Identifique algumas fontes de dados que podem ser usadas para auxiliar na quantificação da previsão e discuta os perigos que devem ser evitados no uso desses dados.
- ✓ Comente sobre a importância da previsão da Confiabilidade em conjunto com a realização de ensaios para assegurar a maturidade do produto.

